Two experiments examined plasticity induced by context in a simple target localization task. The context was represented by interleaved localization trials with the target preceded by a distractor. In a previous study, the context induced large response shifts when the target and distractor stimuli were identical 2-ms-noise clicks [Kopčo, Best, and Shinn-Cunningham (2007). J. Acoust. Soc. Am. 121, 420–432]. Here, the temporal characteristics of the contextual effect were examined for the same stimuli. Experiment 1 manipulated the context presentation rate and the distractor-target inter-stimulus interval (ISI). Experiment 2 manipulated the temporal structure of the context stimulus, replacing the one-click distractor either by a distractor consisting of eight sequentially presented clicks or by a noise burst with total energy and duration identical to the eight-click distractor. In experiment 1, the contextual shift size increased with increasing context rate while being largely independent of ISI. In experiment 2, the eight-click-distractor induced a stronger shift than the one-click-distractor context, while the noise-distractor context induced a very small shift. These results suggest that contextual plasticity is an adaptation driven both by low-level factors like spatiotemporal context distribution and higher-level factors like perceptual similarity between the stimuli, possibly related to precedence buildup.

1.
Bernstein
,
L. R.
, and
Trahiotis
,
C.
(
2002
).
“Enhancing sensitivity to interaural delays at high frequencies by using ‘transposed stimuli
,’”
J. Acoust. Soc. Am.
112
,
1026
1036
.
2.
Best
,
V.
,
Gallun
,
F. J.
,
Carlile
,
S.
, and
Shinn-Cunningham
,
B. G.
(
2007
). “
Binaural interference and auditory grouping
,”
J. Acoust. Soc. Am.
121
,
1070
1076
.
3.
Boehnke
,
S. E.
, and
Phillips
,
D. P.
(
2005
). “
The relation between auditory temporal interval processing and sequential stream segregation examined with stimulus laterality differences
,”
Percept. Psychophys.
67
,
1088
1101
.
4.
Breebaart
,
J.
,
van de Par
,
S.
, and
Kohlrausch
,
a
(
2001
). “
Binaural processing model based on contralateral inhibition. I. Model structure
,”
J. Acoust. Soc. Am.
110
,
1074
1088
.
5.
Brown
,
A. D.
,
Kuznetsova
,
M. S.
,
Spain
,
W. J.
, and
Stecker
,
G. C.
(
2012
). “
Frequency-specific, location-nonspecific adaptation of interaural time difference sensitivity
,”
Hear. Res.
291
,
52
56
.
6.
Brown
,
A. D.
, and
Stecker
,
G. C.
(
2013
). “
The precedence effect: Fusion and lateralization measures for headphone stimuli lateralized by interaural time and level differences
,”
J. Acoust. Soc. Am.
133
,
2883
2898
.
7.
Carlile
,
S.
,
Hyams
,
S.
, and
Delaney
,
S.
(
2001
). “
Systematic distortions of auditory space perception following prolonged exposure to broadband noise
,”
J. Acoust. Soc. Am.
110
,
416
424
.
8.
Dahmen
,
J. C.
,
Keating
,
P.
,
Nodal
,
F. R.
,
Schulz
,
A. L.
, and
King
,
A. J.
(
2010
). “
Adaptation to stimulus statistics in the perception and neural representation of auditory space
,”
Neuron
66
,
937
948
.
9.
Dietz
,
M.
,
Ewert
,
S. D.
, and
Hohmann
,
V.
(
2011
). “
Auditory model based direction estimation of concurrent speakers from binaural signals
,”
Speech Commun.
53
,
592
605
.
10.
Djelani
,
T.
, and
Blauert
,
J.
(
2001
). “
Investigations into the build-up and breakdown of the precedence effect
,”
Acta Acust. united Acust.
87
,
253
261
, available at http://www.ingentaconnect.com/content/dav/aaua/2001/00000087/00000002/art00012.
11.
Freyman
,
R. L.
,
Clifton
,
R. K.
, and
Litovsky
,
R. Y.
(
1991
). “
Dynamic processes in the precedence effect
,”
J. Acoust. Soc. Am.
90
,
874
884
.
12.
Furukawa
,
S.
(
2005
). “
Dependency of the interaural phase difference sensitivities of inferior collicular neurons on a preceding tone and its implications in neural population coding
,”
J. Neurophysiol.
93
,
3313
3326
.
13.
Getzmann
,
S.
(
2004
). “
Spatial discrimination of sound sources in the horizontal plane following an adapter sound
,”
Hear. Res.
191
,
14
20
.
14.
Grothe
,
B.
,
Pecka
,
M.
, and
McAlpine
,
D.
(
2010
). “
Mechanisms of sound localization in mammals
,”
Physiol. Rev.
90
,
983
1012
.
15.
Herron
,
T.
(
2005
). “
C language exploratory analysis of variance with enhancements
,” available at http://www.ebire.org/hcnlab/software/cleave.html (Last viewed November 16, 2017).
16.
Kashino
,
M.
, and
Nishida
,
S.
(
1998
). “
Adaptation in the processing of interaural time differences revealed by the auditory localization aftereffect
,”
J. Acoust. Soc. Am.
103
,
3597
3604
.
17.
Keen
,
R.
, and
Freyman
,
R. L.
(
2009
). “
Release and re-buildup of listeners' models of auditory space
,”
J. Acoust. Soc. Am.
125
,
3243
3252
.
18.
Kopčo
,
N.
,
Andrejková
,
G.
,
Best
,
V.
, and
Shinn-Cunningham
,
B.
(
2017
). “
Streaming and sound localization with a preceding distractor
,”
J. Acoust. Soc. Am.
141
,
EL331
EL337
.
19.
Kopčo
,
N.
,
Best
,
V.
, and
Carlile
,
S.
(
2010
). “
Speech localization in a multitalker mixture
,”
J. Acoust. Soc. Am.
127
,
1450
1457
.
20.
Kopčo
,
N.
,
Best
,
V.
, and
Shinn-Cunningham
,
B. G.
(
2007
). “
Sound localization with a preceding distractor
,”
J. Acoust. Soc. Am.
121
,
420
432
.
21.
Kopčo
,
N.
,
Marcinek
,
Ľ.
,
Tomoriová
,
B.
, and
Hládek
,
Ľ.
(
2015
). “
Contextual plasticity, top-down, and non-auditory factors in sound localization with a distractor
,”
J. Acoust. Soc. Am.
137
,
EL281
EL287
.
22.
Litovsky
,
R. Y.
,
Colburn
,
H. S.
,
Yost
,
W. A.
, and
Guzman
,
S. J.
(
1999
). “
The precedence effect
,”
J. Acoust. Soc. Am.
106
,
1633
1654
.
23.
Maddox
,
R. K.
,
Pospisil
,
D. A.
,
Stecker
,
G. C.
, and
Lee
,
A. K. C.
(
2014
). “
Directing eye gaze enhances auditory spatial cue discrimination
,”
Curr. Biol.
24
,
748
752
.
24.
Maier
,
J. K.
,
McAlpine
,
D.
,
Klump
,
G. M.
, and
Pressnitzer
,
D.
(
2010
). “
Context effects in the discriminability of spatial cues
,”
J. Assoc. Res. Otolaryngol.
11
,
319
328
.
25.
Martin
,
R. L.
,
Flanagan
,
P.
,
McAnally
,
K. I.
, and
Eberle
,
G.
(
2011
). “
Memory for the locations of environmental sounds
,”
J. Acoust. Soc. Am.
129
,
3873
3883
.
26.
Micheyl
,
C.
,
Hanson
,
C.
,
Demany
,
L.
,
Shamma
,
S.
, and
Oxenham
,
A. J.
(
2013
). “
Auditory stream segregation for alternating and synchronous tones
,”
J. Exp. Psychol. Hum. Percept. Perform.
39
,
1568
1580
.
27.
Phillips
,
D. P.
, and
Hall
,
S. E.
(
2005
). “
Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level
,”
Hear. Res.
202
,
188
199
.
28.
Sach
,
A. J.
,
Hill
,
N. I.
, and
Bailey
,
P. J.
(
2000
). “
Auditory spatial attention using interaural time differences
,”
J. Exp. Psychol. Hum. Percept. Perform.
26
,
717
729
.
29.
Sanders
,
L. D.
,
Zobel
,
B. H.
,
Freyman
,
R. L.
, and
Keen
,
R.
(
2011
). “
Manipulations of listeners' echo perception are reflected in event-related potentials
,”
J. Acoust. Soc. Am.
129
,
301
309
.
30.
Shamma
,
S. A.
,
Elhilali
,
M.
, and
Micheyl
,
C.
(
2011
). “
Temporal coherence and attention in auditory scene analysis
,”
Trends Neurosci.
34
,
114
123
.
31.
Simpson
,
B. D.
,
Brungart
,
D. S.
,
Gilkey
,
R. H.
,
Iyer
,
N.
, and
Hamil
,
J. T.
(
2007
). “
Localization in multiple source environments: Localizing the missing source
,” in
Proc. 13th Int. Conf. Audit. Disp.
,
June 26–29
,
Montreal, Canada
, pp.
280
284
.
32.
Spence
,
C.
, and
Driver
,
J.
(
1998
). “
Inhibition of return following an auditory cue the role of central reorienting events
,”
Exp. Brain Res.
118
,
352
360
.
33.
Stange
,
A.
,
Myoga
,
M. H.
,
Lingner
,
A.
,
Ford
,
M. C.
,
Alexandrova
,
O.
,
Felmy
,
F.
,
Pecka
,
M.
,
Siveke
,
I.
, and
Grothe
,
B.
(
2013
). “
Adaptation in sound localization: From GABA(B) receptor-mediated synaptic modulation to perception
,”
Nat. Neurosci.
16
,
1840
1847
.
34.
Weintraub
,
D. M.
,
Metzger
,
B. A.
, and
Snyder
,
J. S.
(
2014
). “
Effects of attention to and awareness of preceding context tones on auditory streaming
,”
J. Exp. Psychol. Hum. Percept. Perform.
40
,
685
701
.
You do not currently have access to this content.