Ultrasound-driven microbubbles have been used in therapeutic applications to deliver drugs across capillaries and into cells or to dissolve blood clots. Yet the performance and safety of these applications have been difficult to control. Microbubbles exposed to ultrasound not only volumetrically oscillate, but also move due to acoustic radiation, or Bjerknes, forces. The purpose of this work was to understand the extent to which microbubbles moved and clustered due to secondary Bjerknes forces. A microbubble population was exposed to a 1-MHz ultrasound pulse with a peak-rarefactional pressure of 50–100 kPa and a pulse length of 20 ms. Microbubbles exposed to low-pressure therapeutic ultrasound were observed to cluster at clustering rates of 0.01–0.02 microbubbles per duration (in ms) per initial average inter-bubble distance (in μm), resulting in 1 to 3 clustered microbubbles per initial average inter-bubble distance (in μm). Higher pressures caused faster clustering rates and a larger number of clustered microbubbles. Experimental data revealed clustering time scales, cluster localizations, and cluster sizes that were in reasonable agreement with simulations using a time-averaged model at low pressures. This study demonstrates that clustering of microbubbles occurs within a few milliseconds and is likely to influence the distribution of stimuli produced in therapeutic applications.

1.
Agarwal
,
A.
,
Xu
,
H.
,
Ng
,
W. J.
, and
Liu
,
Y.
(
2012
). “
Biofilm detachment by self-collapsing air microbubbles: A potential chemical-free cleaning technology for membrane biofouling
,”
J. Mater. Chem.
22
,
2203
2207
.
2.
Apfel
,
R. E.
(
1988
). “
Acoustically induced square law forces and some speculations about gravitation
,”
Am. J. Phys.
56
,
726
729
.
3.
Bader
,
K. B.
,
Gruber
,
M. J.
, and
Holland
,
C. K.
(
2015
). “
Shaken and stirred: Mechanisms of ultrasound-enhanced thrombolysis
,”
Ultrasound Med. Biol.
41
,
187
196
.
4.
Baseri
,
B.
,
Choi
,
J. J.
,
Tung
,
Y.-S.
, and
Konofagou
,
E. E.
(
2010
). “
Multi-modality safety assessment of blood-brain barrier opening using focused ultrasound and definity microbubbles: A short-term study
,”
Ultrasound Med. Biol.
36
,
1445
1459
.
5.
Bjerknes
,
V.
(
1906
).
Fields of Force
(
Columbia University Press
,
New York
), Chap. II, pp.
29
55
.
6.
Borden
,
M. A.
, and
Longo
,
M. L.
(
2002
). “
Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: Effect of lipid hydrophobic chain length
,”
Langmuir
18
,
9225
9233
.
7.
Bremond
,
N.
,
Arora
,
M.
,
Dammer
,
S. M.
, and
Lohse
,
D.
(
2006a
). “
Interaction of cavitation bubbles on a wall
,”
Phys. Fluids
18
,
121505
.
8.
Bremond
,
N.
,
Arora
,
M.
,
Ohl
,
C.-D.
, and
Lohse
,
D.
(
2006b
). “
Controlled multibubble surface cavitation
,”
Phys. Rev. Lett.
96
,
224501
.
9.
Brems
,
S.
,
Hauptmann
,
M.
,
Camerotto
,
E.
,
Mertens
,
P. W.
,
Heyns
,
M.
,
Struyf
,
H.
, and
De Gendt
,
S.
(
2014
). “
Physical forces exerted by microbubbles on a surface in a traveling wave field
,”
Ultrasonics
54
,
706
709
.
10.
Carlisle
,
R.
,
Choi
,
J.
,
Bazan-Peregrino
,
M.
,
Laga
,
R.
,
Subr
,
V.
,
Kostka
,
L.
,
Ulbrich
,
K.
,
Coussios
,
C. C.
, and
Seymour
,
L. W.
(
2013
). “
Enhanced tumor uptake and penetration of virotherapy using polymer stealthing and focused ultrasound
,”
J. Natl. Cancer Inst.
105
,
1701
1710
.
84.
Chanine
,
G. L.
(
1984
). “
Pressures generated by a bubble cloud collapse
,”
Chem. Eng. Commun.
28
,
355
367
.
11.
Chen
,
W.-S.
,
Brayman
,
A. A.
,
Matula
,
T. J.
, and
Crum
,
L. A.
(
2003a
). “
Inertial cavitation dose and hemolysis produced in vitro with or without Optison
,”
Ultrasound Med. Biol.
29
,
725
737
.
12.
Chen
,
W. S.
,
Brayman
,
A. A.
,
Matula
,
T. J.
,
Crum
,
L. A.
, and
Miller
,
M. W.
(
2003b
). “
The pulse length-dependence of inertial cavitation dose and hemolysis
,”
Ultrasound Med. Biol.
29
,
739
748
.
13.
Chen
,
X.
,
Wang
,
J.
,
Pacella
,
J. J.
, and
Villanueva
,
F. S.
(
2016
). “
Dynamic behavior of microbubbles during long ultrasound tone-burst excitation: Mechanistic insights into ultrasound-microbubble mediated therapeutics using high-speed imaging and cavitation detection
,”
Ultrasound Med. Biol.
42
,
528
5387
.
14.
Choi
,
J.
,
Pernot
,
M.
,
Brown
,
T. R.
,
Small
,
S. A.
, and
Konofagou
,
E. E.
(
2007
). “
Spatio-temporal analysis of molecular delivery through the blood-brain barrier using focused ultrasound
,”
Phys. Med. Biol.
52
,
5509
5530
.
15.
Choi
,
J. J.
,
Selert
,
K.
,
Gao
,
Z.
,
Samiotaki
,
G.
,
Baseri
,
B.
, and
Konofagou
,
E. E.
(
2011a
). “
Noninvasive and localized blood-brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies
,”
J. Cereb. Blood Flow Metab.
31
,
725
737
.
16.
Choi
,
J. J.
,
Selert
,
K.
,
Vlachos
,
F.
,
Wong
,
A.
, and
Konofagou
,
E. E.
(
2011b
). “
Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
16539
16544
.
17.
Chomas
,
J. E.
,
Dayton
,
P.
,
May
,
D.
, and
Ferrara
,
K.
(
2001
). “
Threshold of fragmentation for ultrasonic contrast agents
,”
J. Biomed. Opt.
6
,
141
150
.
18.
Chong
,
K. J. Y.
,
Quek
,
C. Y.
,
Dzaharudin
,
F.
,
Ooi
,
A.
, and
Manasseh
,
R.
(
2010
). “
The effects of coupling and bubble size on the dynamical-systems behaviour of a small cluster of microbubbles
,”
J. Sound Vib.
329
,
687
699
.
19.
Cosgrove
,
D.
, and
Harvey
,
C.
(
2009
). “
Clinical uses of microbubbles in diagnosis and treatment
,”
Med. Biol. Eng. Comput.
47
,
813
826
.
20.
Cox
,
S. J.
, and
Graner
,
F.
(
2004
). “
Three-dimensional bubble clusters: Shape, packing, and growth rate
,”
Phys. Rev. E
69
,
031409
.
21.
Crum
,
L. A.
(
1975
). “
Bjerknes forces on bubbles in a stationary sound field
,”
J. Acoust. Soc. Am.
57
,
1363
1370
.
86.
D'Agostino
,
L.
, and
Brennen
,
C. E.
(
1989
). “
Linearized dynamics of spherical bubble clouds
,”
J. Fluid Mech.
199
,
155
176
.
22.
Dayton
,
P.
,
Klibanov
,
A.
,
Brandenburger
,
G.
, and
Ferrara
,
K.
(
1999b
). “
Acoustic radiation force in vivo: A mechanism to assist targeting of microbubbles
,”
Ultrasound Med. Biol.
25
,
1195
1201
.
23.
Dayton
,
P.
,
Morgan
,
K.
,
Klibanov
,
A.
,
Brandenburger
,
G.
,
Nightingale
,
K.
, and
Ferrara
,
K.
(
1997
). “
A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
1264
1277
.
24.
Dayton
,
P. A.
,
Allen
,
J. S.
, and
Ferrara
,
K. W.
(
2002
). “
The magnitude of radiation force on ultrasound contrast agents
,”
J. Acoust. Soc. Am.
112
,
2183
2192
.
25.
Dayton
,
P. A.
,
Morgan
,
K. E.
,
Klibanov
,
A. L.
,
Brandenburger
,
G. H.
, and
Ferrara
,
K. W.
(
1999a
). “
Optical and acoustical observations of the effects of ultrasound on contrast agents
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
220
232
.
26.
Doinikov
,
A.
(
2001
). “
Translational motion of two interacting bubbles in a strong acoustic field
,”
Phys. Rev. E
64
,
026301
.
27.
Doinikov
,
A. A.
(
1997
). “
Radiation forces between two bubbles in a compressible liquid
,”
J. Acoust. Soc. Am.
102
,
1424
1431
.
28.
Doinikov
,
A. A.
(
1999
). “
Bjerknes forces between two bubbles in a viscous fluid
,”
J. Acoust. Soc. Am.
106
,
3305
3312
.
29.
Doinikov
,
A. A.
(
2002
). “
Viscous effects on the interaction force between two small gas bubbles in a weak acoustic field
,”
J. Acoust. Soc. Am.
111
,
1602
1609
.
30.
Doinikov
,
A. A.
(
2004
). “
Mathematical model for collective bubble dynamics in strong ultrasound fields
,”
J. Acoust. Soc. Am.
116
,
821
827
.
31.
Doinikov
,
A. A.
(
2005
). “
Bjerknes forces and translational bubble dynamics
,” in
Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications
(
Research Signpost
,
Trivandrum, Kerala, India
), pp.
95
143
.
32.
Doinikov
,
A. A.
, and
Bouakaz
,
A.
(
2015
). “
Theoretical model for coupled radial and translational motion of two bubbles at arbitrary separation distances
,”
Phys. Rev. E
92
,
043001
.
33.
Doinikov
,
A. A.
,
Zhao
,
S.
, and
Dayton
,
P. A.
(
2009
). “
Modeling of the acoustic response from contrast agent microbubbles near a rigid wall
,”
Ultrasonics
49
,
195
201
.
34.
Dzaharudin
,
F.
,
Suslov
,
S. A.
,
Manasseh
,
R.
, and
Ooi
,
A.
(
2013
). “
Effects of coupling, bubble size, and spatial arrangement on chaotic dynamics of microbubble cluster in ultrasonic fields
,”
J. Acoust. Soc. Am.
134
,
3425
3434
.
35.
Eller
,
A.
(
1968
). “
Force on a bubble in a standing acoustic wave
,”
J. Acoust. Soc. Am.
43
,
170
171
.
36.
Fan
,
Z.
,
Chen
,
D.
, and
Deng
,
C. X.
(
2014
). “
Characterization of the dynamic activities of a population of microbubbles driven by pulsed ultrasound exposure in sonoporation
,”
Ultrasound Med. Biol.
40
,
1260
1272
.
37.
Garbin
,
V.
,
Cojoc
,
D.
,
Ferrari
,
E.
,
Di Fabrizio
,
E.
,
Overvelde
,
M. L. J.
,
van der Meer
,
S. M.
,
de Jong
,
N.
,
Lohse
,
D.
, and
Versluis
,
M.
(
2007
). “
Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging
,”
Appl. Phys. Lett.
90
,
114103
.
38.
Garbin
,
V.
,
Cojoc
,
D.
,
Ferrari
,
E.
,
Proietti
,
R. Z.
,
Cabrini
,
S.
, and
Di Fabrizio
,
E.
(
2005
). “
Optical micro-manipulation using Laguerre-Gaussian beams
,”
Jpn. J. Appl. Phys.
44
,
5773
5776
.
39.
Garbin
,
V.
,
Dollet
,
B.
,
Overvelde
,
M.
,
Cojoc
,
D.
,
Di Fabrizio
,
E.
,
van Wijngaarden
,
L.
,
Prosperetti
,
A.
,
de Jong
,
N.
,
Lohse
,
D.
, and
Versluis
,
M.
(
2009
). “
History force on coated microbubbles propelled by ultrasound
,”
Phys. Fluids
21
,
092003
.
40.
Garbin
,
V.
,
Overvelde
,
M.
,
Dollet
,
B.
,
de Jong
,
N.
,
Lohse
,
D.
, and
Versluis
,
M.
(
2011
). “
Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces
,”
Phys. Med. Biol.
56
,
6161
6177
.
41.
Graham
,
S. M.
,
Carlisle
,
R.
,
Choi
,
J. J.
,
Stevenson
,
M.
,
Shah
,
A. R.
,
Myers
,
R. S.
,
Fisher
,
K.
,
Peregrino
,
M.
,
Seymour
,
L. W.
, and
Coussios
,
C. C.
(
2014
). “
Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes
,”
J. Control. Release
178
,
101
107
.
85.
Hales
,
T. C.
(
2001
). “
The honeycomb conjecture
,”
Discrete Comput. Geom.
25
,
1
2
.
42.
Hamilton
,
M. F.
,
Ilinskii
,
Y. A.
,
Meegan
,
G. D.
, and
Zabolotskaya
,
E. A.
(
2005
). “
Interaction of bubbles in a cluster near a rigid surface
,”
Acoust. Res. Lett. Online
6
,
207
213
.
43.
Hitchcock
,
K. E.
,
Ivancevich
,
N. M.
,
Haworth
,
K. J.
,
Caudell Stamper
,
D. N.
,
Vela
,
D. C.
,
Sutton
,
J. T.
,
Pyne-Geithman
,
G. J.
, and
Holland
,
C. K.
(
2011
). “
Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model
,”
Ultrasound Med. Biol.
37
,
1240
1251
.
44.
Holland
,
C. K.
,
Vaidya
,
S. S.
,
Coussios
,
C.-C.
, and
Shaw
,
G. J.
(
2002
). “
Thrombolytic effects of 120-kHz and 1-MHz ultrasound and tissue plasminogen activator on porcine whole blood clots
,”
J. Acoust. Soc. Am.
112
,
2370
.
45.
Hu
,
Y.
,
Wan
,
J. M. F.
, and
Yu
,
A. C. H.
(
2013
). “
Membrane perforation and recovery dynamics in microbubble-mediated sonoporation
,”
Ultrasound Med. Biol.
39
,
2393
2405
.
46.
Hynynen
,
K.
,
McDannold
,
N.
,
Vykhodtseva
,
N.
, and
Jolesz
,
F. A.
(
2001
). “
Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits
,”
Radiology
220
,
640
646
.
47.
Keller
,
J. B.
, and
Miksis
,
M.
(
1980
). “
Bubble oscillations of large amplitude
,”
J. Acoust. Soc. Am.
68
,
628
633
.
48.
Kokhuis
,
T. J. A.
,
Garbin
,
V.
,
Kooiman
,
K.
,
Naaijkens
,
B. A.
,
Juffermans
,
L. J. M.
,
Kamp
,
O.
,
van der Steen
,
A. F. W.
,
Versluis
,
M.
, and
de Jong
,
N.
(
2013
). “
Secondary Bjerknes forces deform targeted microbubbles
,”
Ultrasound Med. Biol.
39
,
490
506
.
49.
Konofagou
,
E. E.
(
2012
). “
Optimization of the ultrasound-induced blood-brain barrier opening
,”
Theranostics
2
,
1223
1237
.
50.
Kooiman
,
K.
,
Foppen-Harteveld
,
M.
,
van der Steen
,
A. F. W.
, and
de Jong
,
N.
(
2011
). “
Sonoporation of endothelial cells by vibrating targeted microbubbles
,”
J. Control. Release
154
,
35
41
.
51.
Koruk
,
H.
,
El Ghamrawy
,
A.
,
Pouliopoulos
,
A. N.
, and
Choi
,
J. J.
(
2015
). “
Acoustic particle palpation for measuring tissue elasticity
,”
Appl. Phys. Lett.
107
,
223701
.
52.
Kotopoulis
,
S.
, and
Postema
,
M.
(
2010
). “
Microfoam formation in a capillary
,”
Ultrasonics
50
,
260
268
.
53.
Krehbiel
,
J. D.
,
Schideman
,
L. C.
,
King
,
D. A.
, and
Freund
,
J. B.
(
2014
). “
Algal cell disruption using microbubbles to localize ultrasonic energy
,”
Bioresour. Technol.
173
,
448
451
.
54.
Lanoy
,
M.
,
Derec
,
C.
,
Tourin
,
A.
, and
Leroy
,
V.
(
2015
). “
Manipulating bubbles with secondary Bjerknes forces
,”
Appl. Phys. Lett.
107
,
214101
.
55.
Lindner
,
J. R.
(
2004
). “
Microbubbles in medical imaging: Current applications and future directions
,”
Nat. Rev. Drug Discov.
3
,
527
532
.
56.
Liu
,
H.-L.
,
Wai
,
Y.-Y.
,
Chen
,
W.-S.
,
Chen
,
J.-C.
,
Hsu
,
P.-H.
,
Wu
,
X.-Y.
,
Huang
,
W.-C.
,
Yen
,
T.-C.
, and
Wang
,
J.-J.
(
2008
). “
Hemorrhage detection during focused-ultrasound induced blood-brain-barrier opening by using susceptibility-weighted magnetic resonance imaging
,”
Ultrasound Med. Biol.
34
,
598
606
.
87.
Ma
,
J.
,
Chahine
,
G. L.
, and
Hsiao
,
C. T.
(
2015
). “
Spherical bubble dynamics in a bubbly medium using an Euler-Lagrange model
,”
Chem. Eng. Sci.
128
,
64
81
.
57.
Marmottant
,
P.
,
van der Meer
,
S.
,
Emmer
,
M.
,
Versluis
,
M.
,
de Jong
,
N.
,
Hilgenfeldt
,
S.
, and
Lohse
,
D.
(
2005
). “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
,
3499
3505
.
58.
Marmottant
,
P.
,
Versluis
,
M.
,
De Jong
,
N.
,
Hilgenfeldt
,
S.
, and
Lohse
,
D.
(
2006
). “
High-speed imaging of an ultrasound-driven bubble in contact with a wall: ‘Narcissus’ effect and resolved acoustic streaming
,”
Exp. Fluids
41
,
147
153
.
59.
Matsumoto
,
Y.
,
Allen
,
J. S.
,
Yoshizawa
,
S.
,
Ikeda
,
T.
, and
Kaneko
,
Y.
(
2005
). “
Medical ultrasound with microbubbles
,”
Exp. Therm. Fluid Sci.
29
,
255
265
.
60.
Mei
,
R.
(
1994
). “
Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number
,”
J. Fluid Mech.
270
,
133
174
.
61.
Mettin
,
R.
,
Akhatov
,
I.
,
Parlitz
,
U.
,
Ohl
,
C.
, and
Lauterborn
,
W.
(
1997
). “
Bjerknes forces between small cavitation bubbles in a strong acoustic field
,”
Phys. Rev. E
56
,
2924
2931
.
62.
Mettin
,
R.
,
Luther
,
S.
,
Ohl
,
C.-D.
, and
Lauterborn
,
W.
(
1999
). “
Acoustic cavitation structures and simulations by a particle model
,”
Ultrason. Sonochem.
6
,
25
29
.
63.
Nhan
,
T.
,
Burgess
,
A.
,
Cho
,
E. E.
,
Stefanovic
,
B.
,
Lilge
,
L.
, and
Hynynen
,
K.
(
2013
). “
Drug delivery to the brain by focused ultrasound induced blood-brain barrier disruption: Quantitative evaluation of enhanced permeability of cerebral vasculature using two-photon microscopy
,”
J. Control. Release
172
,
274
280
.
64.
Oguz
,
H. N.
, and
Prosperetti
,
A.
(
1990
). “
A generalization of the impulse and virial theorems with an application to bubble oscillations
,”
J. Fluid Mech.
218
,
143
162
.
65.
Postema
,
M.
,
van Wamel
,
A.
,
Lancée
,
C. T.
, and
de Jong
,
N.
(
2004
). “
Ultrasound-induced encapsulated microbubble phenomena
,”
Ultrasound Med. Biol.
30
,
827
840
.
66.
Pouliopoulos
,
A. N.
,
Bonaccorsi
,
S.
, and
Choi
,
J. J.
(
2014
). “
Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy
,”
Phys. Med. Biol.
59
,
6941
6957
.
67.
Pouliopoulos
,
A. N.
, and
Choi
,
J. J.
(
2016
). “
Superharmonic microbubble Doppler effect in ultrasound therapy
,”
Phys. Med. Biol.
61
,
6154
6171
.
68.
Pouliopoulos
,
A. N.
,
Li
,
C.
,
Tinguely
,
M.
,
Garbin
,
V.
,
Tang
,
M.-X.
, and
Choi
,
J. J.
(
2016
). “
Rapid short-pulse sequences enhance the spatiotemporal uniformity of acoustically driven microbubble activity during flow conditions
,”
J. Acoust. Soc. Am.
140
,
2469
2480
.
69.
Reddy
,
A. J.
, and
Szeri
,
A. J.
(
2002
). “
Coupled dynamics of translation and collapse of acoustically driven microbubbles
,”
J. Acoust. Soc. Am.
112
,
1346
1352
.
70.
Schmidt
,
B. J.
,
Sousa
,
I.
,
van Beek
,
A. A.
, and
Böhmer
,
M. R.
(
2008
). “
Adhesion and ultrasound-induced delivery from monodisperse microbubbles in a parallel plate flow cell
,”
J. Control. Release
131
,
19
26
.
71.
Shamout
,
F. E.
,
Pouliopoulos
,
A. N.
,
Lee
,
P.
,
Bonaccorsi
,
S.
,
Towhidi
,
L.
,
Krams
,
R.
, and
Choi
,
J. J.
(
2015
). “
Enhancement of non-invasive trans-membrane drug delivery using ultrasound and microbubbles during physiologically relevant flow
,”
Ultrasound Med. Biol.
41
,
2435
2448
.
72.
Stride
,
E. P.
, and
Coussios
,
C. C.
(
2010
). “
Cavitation and contrast: The use of bubbles in ultrasound imaging and therapy
,”
Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
224
,
171
191
.
73.
Takemura
,
F.
, and
Magnaudet
,
J.
(
2004
). “
The history force on a rapidly shrinking bubble rising at finite Reynolds number
,”
Phys. Fluids
16
,
3247
3255
.
74.
Unger
,
E. C.
,
Porter
,
T.
,
Culp
,
W.
,
Labell
,
R.
,
Matsunaga
,
T.
, and
Zutshi
,
R.
(
2004
). “
Therapeutic applications of lipid-coated microbubbles
,”
Adv. Drug Deliv. Rev.
56
,
1291
1314
.
75.
van der Meer
,
S. M.
,
Dollet
,
B.
,
Voormolen
,
M. M.
,
Chin
,
C. T.
,
Bouakaz
,
A.
,
de Jong
,
N.
,
Versluis
,
M.
, and
Lohse
,
D.
(
2007
). “
Microbubble spectroscopy of ultrasound contrast agents
,”
J. Acoust. Soc. Am.
121
,
648
656
.
76.
van Wamel
,
A.
,
Kooiman
,
K.
,
Harteveld
,
M.
,
Emmer
,
M.
,
ten Cate
,
F. J.
,
Versluis
,
M.
, and
de Jong
,
N.
(
2006
). “
Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation
,”
J. Control. Release
112
,
149
155
.
77.
Vaz
,
M. F.
,
Fortes
,
M. A.
, and
Graner
,
F.
(
2002
). “
Surface energy of free clusters of bubbles: An estimation
,”
Philos. Mag. Lett.
82
,
575
579
.
78.
Yasui
,
K.
,
Lee
,
J.
,
Tuziuti
,
T.
,
Towata
,
A.
,
Kozuka
,
T.
, and
Iida
,
Y.
(
2009
). “
Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound
,”
J. Acoust. Soc. Am.
126
,
973
982
.
79.
Yu
,
H.
, and
Xu
,
L.
(
2014
). “
Cell experimental studies on sonoporation: State of the art and remaining problems
,”
J. Control. Release
174
,
151
160
.
80.
Zeravcic
,
Z.
,
Lohse
,
D.
, and
Van Saarloos
,
W.
(
2011
). “
Collective oscillations in bubble clouds
,”
J. Fluid Mech.
680
,
114
149
.
81.
Zhang
,
Y.-L.
,
Zheng
,
H.-R.
,
Tang
,
M.-X.
, and
Zhang
,
D.
(
2011
). “
Effect of secondary radiation force on aggregation between encapsulated microbubbles
,”
Chinese Phys. B
20
,
114302
.
82.
Zhao
,
S.
,
Borden
,
M.
,
Bloch
,
S. H.
,
Kruse
,
D.
,
Ferrara
,
K. W.
, and
Dayton
,
P. A.
(
2004
). “
Radiation-force assisted targeting facilitates ultrasonic molecular imaging
,”
Mol. Imaging
3
,
135
148
.
83.
Zheng
,
X.
, and
Apfel
,
R. E.
(
1995
). “
Acoustic interaction forces between two fluid spheres in an acoustic field
,”
J. Acoust. Soc. Am.
97
,
2218
2226
.

Supplementary Material

You do not currently have access to this content.