A metamaterial composed of a set of periodic rigid resonant inclusions embedded in a porous lining is investigated to enhance the sound attenuation in an acoustic duct at low frequencies. A transmission loss peak is observed on the measurements and corresponds to the crossing of the lower two Bloch modes of an infinite periodic material. Numerical parametric studies show that the optimum modal attenuation can be achieved at the exceptional point in the parameter plane of inclusion position and frequency, where the two lower modes merge.

1.
H. H.
Hubbard
,
Aeroacoustics of Flight Vehicles: Theory and Practice, Vol. 2 Noise Control
(
NASA Reference publication
,
Washington, DC
,
1991
), Chap. 14,
1258
, pp.
165
205
.
2.
R.
Kabral
,
L.
Du
, and
M.
Åbom
, “
Optimum sound attenuation in flow ducts based on the ‘exact’ Cremer impedance
,”
Acta Acust. united Acust.
102
,
851
860
(
2016
).
3.
T.
Bravo
,
C.
Maury
, and
C.
Pinhède
, “
Optimisation of micro-perforated cylindrical silencers in linear and nonlinear regimes
,”
J. Sound Vib.
363
,
359
379
(
2016
).
4.
D.
Li
,
D.
Chang
, and
B.
Liu
, “
Enhancing the low frequency sound absorption of a perforated panel by parallel-arranged extended tubes
,”
Appl. Acoust.
102
,
126
132
(
2016
).
5.
J.-P.
Groby
,
W.
Huang
,
A.
Lardeau
, and
Y.
Aurégan
, “
The use of slow waves to design simple sound absorbing materials
,”
J. Appl. Phys.
117
,
124903
(
2015
).
6.
Y.
Aurégan
and
V.
Pagneux
, “
Slow sound in lined flow ducts
,”
J. Acoust. Soc. Am.
138
,
605
613
(
2015
).
7.
Y.
Aurégan
,
M.
Farooqui
, and
J.-P.
Groby
, “
Low frequency sound attenuation in a flow duct using a thin slow sound material
,”
J. Acoust. Soc. Am.
139
,
EL149
EL153
(
2016
).
8.
B.
Nilsson
and
O.
Brander
, “
The propagation of sound in cylindrical ducts with mean flow and bulk-reacting lining. I. modes in an infinite duct
,”
J. Inst. Math. Appl.
26
,
269
298
(
1980
).
9.
J. B.
Lawrie
and
R.
Kirby
, “
Mode-matching without root-finding: Application to a dissipative silencer
,”
J. Acoust. Soc. Am.
119
,
2050
2061
(
2006
).
10.
B.
Nennig
,
E.
Perrey-Debain
, and
M.
Ben Tahar
, “
A mode matching method for modelling dissipative silencers lined with poroelastic materials and containing mean flow
,”
J. Acoust. Soc. Am.
128
,
3308
3320
(
2010
).
11.
B.
Nennig
,
M.
Ben Tahar
, and
E.
Perrey-Debain
, “
A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining
,”
J. Acoust. Soc. Am.
130
,
42
51
(
2011
).
12.
B.
Nennig
,
R.
Binois
,
E.
Perrey-Debain
, and
N.
Dauchez
, “
A homogenization method used to predict the performance of silencers containing parallel splitters
,”
J. Acoust. Soc. Am.
137
,
3221
3231
(
2015
).
13.
Y.
Aurégan
and
D.
Kumar Singh
, “
Experimental observation of a hydrodynamic mode in a flow duct with a porous material
,”
J. Acoust. Soc. Am.
136
,
567
572
(
2014
).
14.
R. J.
Astley
, “
A comparative note on the effects of local versus bulk reaction models for air moving ducts lined on all sides
,”
J. Sound Vib.
117
,
191
197
(
1987
).
15.
J.-F.
Allard
,
Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials
(
Chapman & Hall
,
New York
,
1993
),
280
pp.
16.
O.
Tanneau
,
J. B.
Casimir
, and
P.
Lamary
, “
Optimization of multilayered panels with poroelastic components for an acoustical transmission objective
,”
J. Acoust. Soc. Am.
120
,
1227
1238
(
2006
).
17.
J.-P.
Groby
,
A.
Duclos
,
O.
Dazel
,
L.
Boeckx
, and
W.
Lauriks
, “
Enhancing absorption coefficient of a backed rigid frame porous layer by embedding circular periodic inclusions
,”
J. Acoust. Soc. Am.
130
,
3771
3780
(
2011
).
18.
B.
Nennig
,
Y.
Renou
,
J.-P.
Groby
, and
Y.
Aurégan
, “
A mode matching approach for modeling two dimensional porous grating with infinitely rigid or soft inclusions
,”
J. Acoust. Soc. Am.
131
,
3841
3852
(
2012
).
19.
J.-P.
Groby
,
B.
Nennig
,
C.
Lagarrigue
,
B.
Brouard
,
O.
Dazel
, and
V.
Tournat
, “
Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators
,”
J. Acoust. Soc. Am.
137
,
273
280
(
2015
).
20.
C.
Boutin
and
F.-X.
Becot
, “
Theory and experiments on poro-acoustics with inner resonators
,”
Wave Motion
54
,
76
99
(
2015
).
21.
J.
Yang
,
J. S.
Lee
, and
Y. Y.
Kim
, “
Metaporous layer to overcome the thickness constraint for broadband sound absorption
,”
J. Appl. Phys.
117
,
174903
(
2015
).
22.
S.
Griffiths
,
B.
Nennig
, and
S.
Job
, “
Porogranular materials composed of elastic Helmholtz resonators for acoustic wave absorption
,”
J. Acoust. Soc. Am.
141
,
254
264
(
2017
).
23.
J.
Yang
,
J. S.
Lee
, and
Y. Y.
Kim
, “
Multiple slow waves in metaporous layers for broadband sound absorption
,”
J. Phys. D: Appl. Phys.
50
,
015301
(
2017
).
24.
V.
Romero-Garcia
,
G.
Theocharis
,
O.
Richoux
,
A.
Merkel
,
V.
Tournat
, and
V.
Pagneux
, “
Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators
,”
Sci. Rep.
6
,
19519
(
2016
).
25.
B. J.
Tester
, “
The optimization of modal sound attenuation in duct, in the absence of mean flow
,”
J. Sound Vib.
27
,
477
513
(
1973
).
26.
E. L.
Shenderov
, “
Helmholtz equation solutions corresponding to multiple roots of the dispersion equation for a waveguide with impedance walls
,”
Acoust. Phys.
46
,
357
363
(
2000
).
27.
L.
Cremer
, “
Theory of sound attenuation in a rectangular duct with an absorbing wall and the resultant maximum attenuation coefficient
,”
Acustica
2
,
249
263
(
1953
).
28.
T.
Kato
,
Perturbation Theory for Linear Operators
, 2nd ed. (
Springer-Verlag
,
Berlin, Heidelberg
,
1980
),
623
pp.
29.
W. D.
Heiss
and
A. L.
Sannino
, “
Avoided level crossing and exceptional points
,”
J. Phys. A
23
,
1167
1178
(
1990
).
30.
W. D.
Heiss
, “
Repulsion of resonance states and exceptional points
,”
Phys. Rev. E
61
,
929
932
(
2000
).
31.
M.
Berry
, “
Physics of nonhermitian degeneracies
,”
Czech. J. Phys.
54
,
1039
1047
(
2004
).
32.
E.
Hernández
,
A.
Jáuregui
, and
A.
Mondragón
, “
Energy eigenvalue surfaces close to a degeneracy of unbound states: Crossings and anticrossings of energies and widths
,”
Phys. Rev. E
72
,
026221
(
2005
).
33.
W.
Bi
and
W.
Pagneux
, “
New insights into mode behaviours in waveguides with impedance boundary conditions
,” arXiv:1511.05508 (
2015
).
34.
W.
Bi
and
V.
Pagneux
, “
 ‘Resonance trapping’ dans un guide traité par une impédance locale” (“ ‘Trapping resonance’ in a locally reacting lined waveguide”)
, in
CFA
2016, edited by
S. F.
d'Acoustique
(
Le Mans
,
France
,
2016
).
35.
L.
Xiong
,
W.
Bi
, and
Y.
Aurégan
, “
Fano resonance scatterings in waveguides with impedance boundary conditions
,”
J. Acoust. Soc. Am.
139
,
764
772
(
2016
).
36.
B.
Nennig
,
Y.
Renou
, and
Y.
Aurégan
, “
On the use of periodic inclusions embedded in porous lining to enhanced attenuation in waveguides
,” in
Acoustics
(
2012
)
Nantes
,
France
.
37.
C.
Engström
,
C.
Hafner
, and
K.
Schmidt
, “
Computations of lossy Bloch waves in two-dimensional photonic crystals
,”
J. Comput. Theor. Nanosci.
6
,
775
783
(
2009
).
38.
M.
Collet
,
M.
Ouisse
,
M.
Ruzzene
, and
M.
Ichchou
, “
Floquet–Bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems
,”
Int. J. Solids Struct.
48
,
2837
2848
(
2011
).
39.
F.
Tisseur
and
K.
Meerbergen
, “
The quadratic eigenvalue problem
,”
SIAM Rev.
43
,
235
286
(
2001
).
40.
E.
Redon
,
A.-S.
Bonnet-Ben Dhia
,
J.-F.
Mercier
, and
S.
Sari Poernomo
, “
Non-reflecting boundary conditions for acoustic propagation in ducts with acoustic treatment and mean flow
,”
Int. J. Numer. Methods Eng.
86
,
1360
1378
(
2011
).
41.
J. B.
Lawrie
and
I. D.
Abrahams
, “
An orthogonality relation for a class of problems with high-order boundary conditions; applications in sound-structure interaction
,”
Q. J. Mech. Appl. Math.
52
,
161
181
(
1999
).
42.
C.
Geuzaine
and
J.-F.
Remacle
, “
Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities
,”
Int. J. Num. Meth. Eng.
79
,
1309
1331
(
2009
).
43.
F.
Hecht
, “
New development in FreeFEM++
,”
J. Numer. Math.
20
,
251
265
(
2012
).
44.
V.
Hernandez
,
J. E.
Roman
, and
V.
Vidal
, “
SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems
,”
ACM Trans. Math. Software
31
,
351
362
(
2005
).
45.
Y.
Aurégan
and
M.
Leroux
, “
Experimental evidence of an instability over an impedance wall in a duct with flow
,”
J. Sound Vib.
317
,
432
439
(
2008
).
46.
M. L.
Munjal
,
Acoustics of Ducts and Mufflers: With Application to Exhaust and Ventilation System Design
(
Wiley
,
New York
,
1991
), pp.
82
, 416.
You do not currently have access to this content.