In an acoustical context, interferometry takes advantage of existing (ambient) wavefield recordings by turning receivers into so-called “virtual sources.” The medium's response to these virtual sources can be harnessed to image that medium. Most interferometric applications, however, suffer from the fact that the retrieved virtual-source responses deviate from the true medium responses. The accrued artefacts are often predominantly due to a non-isotropic illumination of the medium of interest, and prohibit accurate interferometric imaging. Recently, it has been shown that illumination-related artefacts can be removed by means of a so-called multidimensional deconvolution (MDD) process. However, the current MDD formulation, and hence method, relies on separation of waves traveling inward and outward through the boundary of the medium of interest. As a consequence, it is predominantly useful when receivers are illuminated from one side only. This puts constraints on the applicability of the current MDD formulation to omnidirectional wavefields. In this paper, a modified formulation of the theory underlying interferometry by MDD is presented. This modified formulation eliminates the requirement to separate inward and outward propagating wavefields and, consequently, holds promise for the application of MDD to non-isotropic, omnidirectional wavefields.

1.
O. I.
Lobkis
and
R. L.
Weaver
, “
On the emergence of the Green's function in the correlations of a diffuse field
,”
J. Acoust. Soc. Am.
110
,
3011
3017
(
2001
).
2.
A.
Derode
,
E.
Larose
,
M.
Tanter
,
J.
de Rosny
,
A.
Tourin
,
M.
Campillo
, and
M.
Fink
, “
Recovering the Green's function from field-field correlations in an open scattering medium
,”
J. Acoust. Soc. Am.
113
,
2973
2976
(
2003
).
3.
A.
Bakulin
and
R.
Calvert
, “
Virtual source: New method for imaging and 4D below complex overburden
,”
SEG Technical Program Expanded Abstracts
23
,
2477
2480
(
2004
).
4.
K.
Wapenaar
and
J.
Fokkema
, “
Green's function representations for seismic interferometry
,”
Geophysics
71
,
SI33
SI46
(
2006
).
5.
R.
Weaver
and
O.
Lobkis
, “
On the emergence of the Green's function in the correlations of a diffuse field: pulse-echo using thermal phonons
,”
Ultrasonics
40
,
435
439
(
2002
).
6.
N. M.
Shapiro
and
M.
Campillo
, “
Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise
,”
Geophys. Res. Lett.
31
,
L07614
, (
2004
).
7.
K. G.
Sabra
,
S.
Conti
,
P.
Roux
, and
W. A.
Kuperman
, “
Passive in vivo elastography from skeletal muscle noise
,”
Appl. Phys. Lett.
90
,
194101
(
2007
).
8.
M. M.
Haney
, “
Infrasonic ambient noise interferometry from correlations of microbaroms
,”
Geophys. Res. Lett.
36
,
L19808
, (
2009
).
9.
O. A.
Godin
,
N. A.
Zabotin
, and
V. V.
Goncharov
, “
Ocean tomography with acoustic daylight
,”
Geophys. Res. Lett.
37
,
L13605
, (
2010
).
10.
A.
Bakulin
and
R.
Calvert
, “
The virtual source method: Theory and case study
,”
Geophysics
71
,
SI139
SI150
(
2006
).
11.
B.
Froment
,
M.
Campillo
,
P.
Roux
,
P.
Gouédard
,
A.
Verdel
, and
R. L.
Weaver
, “
Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations
,”
Geophysics
75
,
SA85
SA93
(
2010
).
12.
N. M.
Shapiro
,
M.
Campillo
,
L.
Stehly
, and
M. H.
Ritzwoller
, “
High-resolution surface-wave tomography from ambient seismic noise
,”
Science
307
,
1615
1618
(
2005
).
13.
J.
Verbeke
,
L.
Boschi
,
L.
Stehly
,
E.
Kissling
, and
A.
Michelini
, “
High-resolution Rayleigh-wave velocity maps of central Europe from a dense ambient-noise data set
,”
Geophys. J. Int.
188
,
1173
1187
(
2012
).
14.
V. C.
Tsai
, “
On establishing the accuracy of noise tomography travel-time measurements in a realistic medium
,”
Geophys. J. Int.
178
,
1555
1564
(
2009
).
15.
R.
Weaver
,
B.
Froment
, and
M.
Campillo
, “
On the correlation of non-isotropically distributed ballistic scalar diffuse waves
,”
J. Acoust. Soc. Am.
126
,
1817
1826
(
2009
).
16.
K.
Wapenaar
and
J.
van der Neut
, “
A representation for Green's function retrieval by multidimensional deconvolution
,”
J. Acoust. Soc. Am.
128
,
EL366
EL371
(
2010
).
17.
K.
Wapenaar
,
J.
van der Neut
,
E.
Ruigrok
,
D.
Draganov
,
J.
Hunziker
,
E.
Slob
,
J.
Thorbecke
, and
R.
Snieder
, “
Seismic interferometry by crosscorrelation and by multidimensional deconvolution: A systematic comparison
,”
Geophys. J. Int.
185
,
1335
1364
(
2011
).
18.
J.
van der Neut
, “
Interferometric redatuming by multidimensional deconvolution
,” Ph.D. thesis,
Delft University of Technology, Delft, the Netherlands
,
2012
.
19.
C. P. A.
Wapenaar
and
A. J.
Berkhout
,
Elastic Wave Field Extrapolation: Redatuming of Single- and Multi-Component Seismic Data
, Vol.
2
(
Elsevier Science
,
Amsterdam, the Netherlands
,
1989
).
20.
L.
Fishman
, “
One-way wave propagation methods in direct and inverse scalar wave propagation modeling
,”
Radio Sci.
28
,
865
876
, (
1993
).
21.
C.
Weemstra
,
D.
Draganov
,
E. N.
Ruigrok
,
J.
Hunziker
,
M.
Gomez
, and
K.
Wapenaar
, “
Application of seismic interferometry by multidimensional deconvolution to ambient seismic noise recorded in Malargüe, Argentina
,”
Geophys. J. Int.
208
,
693
714
(
2017
).
22.
J.
van der Neut
,
E.
Ruigrok
,
D.
Draganov
, and
K.
Wapenaar
, “
Retrieving the earth's reflection response by multi-dimensional deconvolution of ambient seismic noise
,” in
Proceedings of the 72nd EAGE Conference & Exhibition
, Barcelona, Spain (June 14–17,
2010
).
23.
S.
Minato
,
T.
Matsuoka
,
T.
Tsuji
,
D.
Draganov
,
J.
Hunziker
, and
K.
Wapenaar
, “
Seismic interferometry using multidimensional deconvolution and crosscorrelation for crosswell sesimic reflection data without borehole sources
,”
Geophysics
76
,
SA19
SA34
(
2011
).
24.
F.
Poletto
and
C.
Bellezza
, “
Multidimensional deconvolution of seismic-interferometry Arctic data
,”
SEG Technical Program Expanded Abstracts
31
,
1
5
(
2012
).
25.
K. N.
van Dalen
,
T. D.
Mikesell
,
E. N.
Ruigrok
, and
K.
Wapenaar
, “
Retrieving surface waves from ambient seismic noise using seismic interferometry by multidimensional deconvolution
,”
J. Geophys. Res.: Solid Earth
120
,
944
961
, (
2015
).
26.
C.
Weemstra
,
R.
Snieder
, and
L.
Boschi
, “
On the estimation of attenuation from the ambient seismic field: Inferences from distributions of isotropic point scatterers
,”
Geophys. J. Int.
203
,
1054
1071
(
2015
).
27.
R.
Snieder
, “
Extracting the Green's function of attenuating heterogeneous acoustic media from uncorrelated waves
,”
J. Acoust. Soc. Am.
121
,
2637
2643
(
2007
).
28.
C.
Weemstra
,
L.
Boschi
,
A.
Goertz
, and
B.
Artman
, “
Seismic attenuation from recordings of ambient noise
,”
Geophysics
78
,
Q1
Q14
(
2013
).
29.
G. D.
Bensen
,
M. H.
Ritzwoller
,
M. P.
Barmin
,
A. L.
Levshin
,
F.
Lin
,
M. P.
Moschetti
,
N. M.
Shapiro
, and
Y.
Yang
, “
Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements
,”
Geophys. J. Int.
169
,
1239
1260
(
2007
).
30.
J.
Groos
,
S.
Bussat
, and
J.
Ritter
, “
Performance of different processing schemes in seismic noise cross-correlations
,”
Geophys. J. Int.
188
,
498
512
(
2012
).
31.
K.
Wapenaar
,
J.
van der Neut
, and
J.
Thorbecke
, “
On the relation between seismic interferometry and the simultaneous-source method
,”
Geophys. Prospect.
60
,
802
823
(
2012
).
32.
C. P. A.
Wapenaar
, “
The infinite aperture paradox
,”
J. Seis. Explor.
1
,
325
336
(
1992
).
33.
S. A. L.
de Ridder
and
B. L.
Biondi
, “
Daily reservoir-scale subsurface monitoring using ambient seismic noise
,”
Geophys. Res. Lett.
40
,
1
6
, (
2013
).
34.
F.
Korostelev
,
C.
Weemstra
,
S.
Leroy
,
L.
Boschi
,
D.
Keir
,
Y.
Ren
,
I.
Molinari
,
A.
Ahmed
,
G. W.
Stuart
,
F.
Rolandone
,
K.
Khanbari
,
J. O. S.
Hammond
,
J. M.
Kendall
,
C.
Doubre
,
I. A.
Ganad
,
B.
Goitom
, and
A.
Ayele
, “
Magmatism on rift flanks: Insights from ambient noise phase velocity in afar region
,”
Geophys. Res. Lett.
42
,
2179
2188
, (
2015
).
35.
A.
Goertz
,
J.
Richardson
,
J.
Faragher
,
C.
Remington
,
P.
Morton
,
P.
Barros
, and
C.
Theodoro
, “
Microseismicity recorded by a fiberoptic ocean-bottom PRM installation offshore Brazil
,” in
Proceedings of the Third EAGE Workshop on Permanent Reservoir Monitoring 2014—Proactive Reservoir Management: PRM and Beyond
, Oslo, Norway (March 17–19,
2014
).
36.
S. A. L.
de Ridder
,
B. L.
Biondi
, and
R. G.
Clapp
, “
Time-lapse seismic noise correlation tomography at Valhall
,”
Geophys. Res. Lett.
41
,
6116
6122
, (
2014
).
37.
K. N.
van Dalen
,
K.
Wapenaar
, and
D. F.
Halliday
, “
Surface wave retrieval in layered media using seismic interferometry by multidimensional deconvolution
,”
Geophys. J. Int.
196
,
230
242
(
2014
).
38.
F.-C.
Lin
,
D.
Li
,
R. W.
Clayton
, and
D.
Hollis
, “
High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array
,”
Geophysics
78
,
Q45
Q56
(
2013
).
39.
V. C.
Tsai
, “
Understanding the amplitudes of noise correlation measurements
,”
J. Geophys. Res.
116
,
B09311
, (
2011
).
40.
K.
Aki
and
P. G.
Richards
,
Quantitative Seismology
, 2nd ed. (
University Science Books
,
Sausalito, CA
,
2002
), p.
700
.
41.
R. G.
Newton
,
Scattering Theory of Waves and Particles
(
Dover Publications Inc.
,
Mineola, NY
,
2002
), p.
749
.
42.
S.
de Ridder
and
J.
Dellinger
, “
Ambient seismic noise eikonal tomography for near-surface imaging at Valhall
,”
The Leading Edge
30
,
506
512
(
2011
).
43.
R.
Snieder
,
J.
Sheiman
, and
R.
Calvert
, “
Equivalence of the virtual-source method and wave-field deconvolution in seismic interferometry
,”
Phys. Rev. E
73
,
066620
(
2006
).
44.
C.
Newton
and
R.
Snieder
, “
Estimating intrinsic attenuation of a building using deconvolution interferometry and time reversal
,”
Bull. Seismol. Soc. Am.
102
,
2200
2208
(
2012
).
45.
F.
Poletto
and
K.
Wapenaar
, “
Virtual reflector representation theorem (acoustic medium)
,”
J. Acoust. Soc. Am.
125
,
EL111
EL116
(
2009
).
46.
S. M.
Hanasoge
and
M.
Branicki
, “
Interpreting cross-correlations of one-bit filtered seismic noise
,”
Geophys. J. Int.
195
,
1811
1830
(
2013
).
47.
C.
Weemstra
,
W.
Westra
,
R.
Snieder
, and
L.
Boschi
, “
On estimating attenuation from the amplitude of the spectrally whitened ambient seismic field
,”
Geophys. J. Int.
197
,
1770
1788
(
2014
).
48.
W. P.
Kimman
,
X.
Campman
, and
J.
Trampert
, “
Characteristics of seismic noise: Fundamental and higher mode energy observed in the northeast of the Netherlands
,”
Bull. Seismol. Soc. Am.
102
,
1388
1399
(
2012
).
49.
J.
Virieux
and
S.
Operto
, “
An overview of full-waveform inversion in exploration geophysics
,”
Geophysics
74
,
WCC127
WCC152
(
2009
).
50.
K. J.
Marfurt
, “
Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations
,”
Geophysics
49
,
533
549
(
1984
).
51.
R.
Snieder
,
A.
Grêt
,
H.
Douma
, and
J.
Scales
, “
Coda wave interferometry for estimating nonlinear behavior in seismic velocity
,”
Science
295
,
2253
2255
(
2002
).
52.
C.
Pacheco
and
R.
Snieder
, “
Time-lapse travel time change of multiply scattered acoustic waves
,”
J. Acoust. Soc. Am.
118
,
1300
1310
(
2005
).
53.
A.
Obermann
,
T.
Planes
,
E.
Larose
,
C.
Sens-Schonfelder
, and
M.
Campillo
, “
Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium
,”
Geophys. J. Int.
194
,
372
382
(
2013
).
54.
C.
Kanu
and
R.
Snieder
, “
Numerical computation of the sensitivity kernel for monitoring weak changes with multiply scattered acoustic waves
,”
Geophys. J. Int.
203
,
1923
1936
(
2015
).
55.
P. F.
Worcester
and
R. C.
Spindel
, “
North Pacific Acoustic Laboratory
,”
J. Acoust. Soc. Am.
117
,
1499
1510
(
2005
).
56.
D. J.
Verschuur
,
A. J.
Berkhout
, and
C. P. A.
Wapenaar
, “
Adaptive surface-related multiple elimination
,”
Geophysics
57
,
1166
1177
(
1992
).
57.
R.
Snieder
,
A Guided Tour of Mathematical Methods for the Physical Sciences
(
Cambridge University Press
,
New York
,
2004
), p.
507
.
You do not currently have access to this content.