The acquisition of auditory memory for temporal patterns was investigated. The temporal patterns were random sequences of irregularly spaced clicks. Participants performed a task previously used to study auditory memory for noise [Agus, Thorpe, and Pressnitzer (2010). Neuron 66, 610–618]. The memory for temporal patterns displayed strong similarities with the memory for noise: temporal patterns were learnt rapidly, in an unsupervised manner, and could be distinguished from statistically matched patterns after learning. There was, however, a qualitative difference from the memory for noise. For temporal patterns, no memory transfer was observed after time reversals, showing that both the time intervals and their order were represented in memory. Remarkably, learning was observed over a broad range of time scales, which encompassed rhythm-like and buzz-like temporal patterns. Temporal patterns present specific challenges to the neural mechanisms of plasticity, because the information to be learnt is distributed over time. Nevertheless, the present data show that the acquisition of novel auditory memories can be as efficient for temporal patterns as for sounds containing additional spectral and spectro-temporal cues, such as noise. This suggests that the rapid formation of memory traces may be a general by-product of repeated auditory exposure.

1.
Agus
,
T. R.
,
Carrión-Castillo
,
A.
,
Pressnitzer
,
D.
, and
Ramus
,
F.
(
2014
). “
Perceptual learning of acoustic noise by individuals with dyslexia
,”
J. Speech Lang. Hear. Res
57
,
1069
1077
.
2.
Agus
,
T. R.
, and
Pressnitzer
,
D.
(
2013
). “
The detection of repetitions in noise before and after perceptual learning
,”
J. Acoust. Soc. Am
134
,
464
473
.
3.
Agus
,
T. R.
,
Suied
,
C.
,
Thorpe
,
S. J.
, and
Pressnitzer
,
D.
(
2012
). “
Fast recognition of musical sounds based on timbre
,”
J. Acoust. Soc. Am
131
,
4124
4133
.
4.
Agus
,
T. R.
,
Thorpe
,
S. J.
, and
Pressnitzer
,
D.
(
2010
). “
Rapid formation of robust auditory memories: Insights from noise
,”
Neuron
66
,
610
618
.
5.
Andrillon
,
T.
,
Kouider
,
S.
,
Agus
,
T.
, and
Pressnitzer
,
D.
(
2015
). “
Perceptual learning of acoustic noise generates memory-evoked potentials
,”
Curr. Biol.
25
,
2823
2829
.
6.
Andrillon
,
T.
,
Pressnitzer
,
D.
,
Léger
,
D.
, and
Kouider
,
S.
(
2017
). “
Formation and suppression of acoustic memories during human sleep
,”
Nat. Commun.
8
,
179
.
7.
Bendor
,
D.
, and
Wang
,
X.
(
2007
). “
Differential neural coding of acoustic flutter within primate auditory cortex
,”
Nat. Neurosci.
10
,
763
771
.
8.
Bidelman
,
G. M.
,
Schug
,
J. M.
,
Jennings
,
S. G.
, and
Bhagat
,
S. P.
(
2014
). “
Psychophysical auditory filter estimates reveal sharper cochlear tuning in musicians
,”
J. Acoust. Soc. Am
136
,
EL33
EL39
.
9.
Cariani
,
P. A.
, and
Delgutte
,
B.
(
1996
). “
Neural correlates of the pitch of complex tones. I. Pitch and pitch salience
,”
J. Neurophysiol.
76
,
1698
1716
.
10.
Demany
,
L.
, and
Semal
,
C.
(
2007
). “
The role of memory in auditory perception
,” in
Auditory Perception of Sound Sources, Springer Handbook of Auditory Research
(
Springer U.S.
,
Boston, MA
), Vol.
29
, pp.
77
113
.
11.
Gao
,
L.
,
Kostlan
,
K.
,
Wang
,
Y.
, and
Wang
,
X.
(
2016
). “
Distinct subthreshold mechanisms underlying rate-coding principles in primate auditory cortex
,”
Neuron
91
,
905
919
.
12.
Goossens
,
T.
,
van de Par
,
S.
, and
Kohlrausch
,
A.
(
2008
). “
On the ability to discriminate Gaussian-noise tokens or random tone-burst complexes
,”
J. Acoust. Soc. Am
124
,
2251
2262
.
13.
Grondin
,
S.
(
2010
). “
Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions
,”
Atten. Percept. Psychophys.
72
,
561
582
.
14.
Guttman
,
N.
, and
Julesz
,
B.
(
1963
). “
Lower limits of auditory periodicity analysis
,”
J. Acoust. Soc. Am
35
,
610
.
15.
Hasson
,
U.
,
Chen
,
J.
, and
Honey
,
C. J.
(
2015
). “
Hierarchical process memory: Memory as an integral component of information processing
,”
Trends Cogn. Sci.
19
,
304
313
.
16.
Hirsh
,
I. J.
,
Monahan
,
C. B.
,
Grant
,
K. W.
, and
Singh
,
P. G.
(
1990
). “
Studies in auditory timing: 1. Simple patterns
,”
Percept. Psychophys.
47
,
215
226
.
17.
Kaernbach
,
C.
(
1993
). “
Temporal and spectral basis of the features perceived in repeated noise
,”
J. Acoust. Soc. Am.
94
,
91
97
.
18.
Kaernbach
,
C.
(
1999
). “
A behavioral reverse correlation technique to decipher early auditory feature coding
,”
J. Acoust. Soc. Am
105
,
966
.
19.
Kaernbach
,
C.
(
2000
). “
Early auditory feature coding
,” in
Contributions to Psychological Acoustics: Results of the Oldenburg Symposium on Psychological Acoustics
, edited by
A.
Schick
,
M.
Meister
, and
C.
Reckhardt
,
Oldenburg
, pp.
295
307
.
20.
Kaernbach
,
C.
(
2004
). “
The memory of noise
,”
Exp. Psychol.
51
,
240
248
.
21.
Kaernbach
,
C.
(
2017
). (private communication).
22.
Kaernbach
,
C.
, and
Demany
,
L.
(
1998
). “
Psychophysical evidence against the autocorrelation theory of auditory temporal processing
,”
J. Acoust. Soc. Am
104
,
2298
2306
.
23.
Karmarkar
,
U. R.
, and
Buonomano
,
D. V.
(
2007
). “
Timing in the absence of clocks: Encoding time in neural network states
,”
Neuron
53
,
427
438
.
24.
Klampfl
,
S.
, and
Maass
,
W.
(
2013
). “
Emergence of dynamic memory traces in cortical microcircuit models through STDP
,”
J. Neurosci.
33
,
11515
11529
.
25.
Krumbholz
,
K.
,
Patterson
,
R. D.
, and
Pressnitzer
,
D.
(
2000
). “
The lower limit of pitch as determined by rate discrimination
,”
J. Acoust. Soc. Am.
108
,
1170
1180
.
26.
Kumar
,
S.
,
Bonnici
,
H. M.
,
Teki
,
S.
,
Agus
,
T. R.
,
Pressnitzer
,
D.
,
Maguire
,
E. A.
, and
Griffiths
,
T. D.
(
2014
). “
Representations of specific acoustic patterns in the auditory cortex and hippocampus
,”
Proc. Biol. Sci.
281
,
20141000
.
27.
Lakens
,
D.
(
2013
). “
Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs
,”
Front. Psychol.
4
,
863
.
28.
Lim
,
Y.
,
Lagoy
,
R.
,
Shinn-Cunningham
,
B. G.
, and
Gardner
,
T. J.
(
2016
). “
Transformation of temporal sequences in the zebra finch auditory system
,”
eLife
5
,
e18205
.
29.
Lu
,
T.
,
Liang
,
L.
, and
Wang
,
X.
(
2001
). “
Temporal and rate representations of time-varying signals in the auditory cortex of awake primates
,”
Nat. Neurosci.
4
,
1131
1138
.
30.
Luo
,
H.
,
Tian
,
X.
,
Song
,
K.
,
Zhou
,
K.
, and
Poeppel
,
D.
(
2013
). “
Neural response phase tracks: How listeners learn new acoustic representations
,”
Curr. Biol.
23
,
968
974
.
31.
Masquelier
,
T.
,
Guyonneau
,
R.
, and
Thorpe
,
S. J.
(
2008
). “
Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains
,”
PLoS One
3
,
e1377
.
32.
Motulsky
,
H.
, and
Christopoulos
,
A.
(
2004
).
Fitting Models to Biological Data using Linear and Nonlinear Regression
(
Oxford University Press
,
New York
).
33.
Norman-Haignere
,
S.
,
Kanwisher
,
N. G.
, and
McDermott
,
J. H.
(
2015
). “
Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition
,”
Neuron
88
,
1281
1296
.
34.
Petkov
,
C. I.
, and
Bendor
,
D.
(
2016
). “
Neuronal mechanisms and transformations encoding time-varying signals
,”
Neuron
91
,
718
721
.
35.
Pollack
,
I.
(
1968a
). “
Periodicity discrimination for auditory pulse trains
,”
J. Acoust. Soc. Am.
43
,
1113
1119
.
36.
Pollack
,
I.
(
1968b
). “
Detection and relative discrimination of auditory ‘jitter,’ 
J. Acoust. Soc. Am.
43
,
308
315
.
37.
Povel
,
D.-J.
, and
Essens
,
P.
(
1985
). “
Perception of temporal patterns
,”
Music Percept.: Interdisc. J.
2
,
411
440
.
38.
Pressnitzer
,
D.
,
Agus
,
T.
, and
Suied
,
C.
(
2015
). “
Acoustic timbre recognition
,” in
Encyclopedia of Computational Neuroscience
(
Springer
,
New York
), pp.
128
133
.
39.
Pressnitzer
,
D.
,
Patterson
,
R. D.
, and
Krumbholz
,
K.
(
2001
). “
The lower limit of melodic pitch
,”
J. Acoust. Soc. Am.
109
,
2074
2084
.
40.
Rajendran
,
V. G.
,
Harper
,
N. S.
,
Abdel-Latif
,
K. H. A.
, and
Schnupp
,
J. W. H.
(
2016
). “
Rhythm facilitates the detection of repeating sound patterns
,”
Front. Neurosci.
10
,
464
467
.
41.
Ross
,
J.
, and
Houtsma
,
A. J.
(
1994
). “
Discrimination of auditory temporal patterns
,”
Percept. Psychophys.
56
,
19
26
.
42.
Rothschild
,
G.
,
Nelken
,
I.
, and
Mizrahi
,
A.
(
2010
). “
Functional organization and population dynamics in the mouse primary auditory cortex
,”
Nature
13
,
353
360
.
43.
Roye
,
A.
,
Schröger
,
E.
,
Jacobsen
,
T.
, and
Gruber
,
T.
(
2010
). “
Is my mobile ringing? Evidence for rapid processing of a personally significant sound in humans
,”
J. Neurosci.
30
,
7310
7313
.
44.
Royer
,
F. L.
, and
Garner
,
W. R.
(
1966
). “
Response uncertainty and perceptual difficulty of auditory temporal patterns
,”
Percept. Psychophys.
1
,
41
47
.
45.
Shamma
,
S.
, and
Lorenzi
,
C.
(
2013
). “
On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system
,”
J. Acoust. Soc. Am
133
,
2818
2833
.
46.
Sorkin
,
R. D.
(
1990
). “
Perception of temporal patterns defined by tonal sequences
,”
J. Acoust. Soc. Am.
87
,
1695
1701
.
47.
Teki
,
S.
, and
Griffiths
,
T. D.
(
2014
). “
Working memory for time intervals in auditory rhythmic sequences
,”
Front. Psychol.
5
,
1329
.
48.
Viswanathan
,
J.
(
2016
). “
When noise enlightens: An investigation into the mechanisms of perception and long- term memory for meaningless auditory stimuli
,” edited by
S. J.
Thorpe
, Doctoral dissertation,
Université Paul Sabatier
,
Toulouse
.
49.
Viswanathan
,
J.
,
Rémy
,
F.
,
Bacon-Macé
,
N.
, and
Thorpe
,
S. J.
(
2016
). “
Long term memory for noise: Evidence of robust encoding of very short temporal acoustic patterns
,”
Front. Neurosci.
10
,
610
611
.
50.
Warren
,
R. M.
,
Bashford
,
J. A.
,
Cooley
,
J. M.
, and
Brubaker
,
B. S.
(
2001
). “
Detection of acoustic repetition for very long stochastic patterns
,”
Percept. Psychophys.
63
,
175
182
.
You do not currently have access to this content.