This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.

1.
P. V.
Loeppert
and
S. B.
Lee
, “
SiSonic–The first commercialized MEMS microphone
,” in
Solid-State Sensors, Actuators, and Microsystems Workshop
,
Hilton Head Island
,
SC
(
2006
), pp.
27
30
.
2.
A.
Dehé
,
M.
Wurzer
,
M.
Füldner
, and
U.
Krumbein
, “
The infineon silicon MEMS microphone
,” in
AMA Conferences 2013, SENSOR 2013, OPTO 2013, IRS 2 2013
(
2013
), pp.
93
99
.
3.
J.
Bergqvist
,
F.
Rudolf
,
J.
Maisano
,
F.
Parodi
, and
M.
Rossi
, “
A silicon condenser microphone with a highly perforated backplate
,” in
Proceedings of International Conference on Solid-State Sensors and Actuators
,
Piscataway, NJ
(
1991
), pp.
266
269
.
4.
S. A.
Jawed
,
D.
Cattin
,
N.
Massari
,
M.
Gottardi
, and
A.
Baschirotto
, “
A 1.8 V 828 μW 80 dB digital MEMS microphone
,”
Analog Integ. Circ. Signal Process.
67
,
395
405
(
2011
).
5.
R. D.
White
,
J.
Krause
,
R.
De Jong
,
G.
Holup
,
J.
Gallman
, and
M.
Moeller
, “
MEMS microphone array on a chip for turbulent boundary layer measurements
,” in
50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
(
January 9–12
,
2012
).
6.
H. C.
Her
,
T. L.
Wu
, and
H.
Huang
, “
Acoustic analysis and fabrication of microelectromechanical system capacitive microphone
,”
J. Appl. Phys.
104
,
084509
(
2008
).
7.
A. J.
Zuckerwar
, “
Theoretical response of condenser microphones
,”
J. Acoust. Soc. Am.
64
,
1278
1285
(
1978
).
8.
T.
Lavergne
,
S.
Durand
,
M.
Bruneau
, and
N.
Joly
, “
Dynamic behavior of the circular membrane of an electrostatic microphone: Effect of holes in the backing electrode
,”
J. Acoust. Soc. Am.
128
,
3459
3477
(
2010
).
9.
D.
Homentcovschi
and
R. N.
Miles
, “
An analytical-numerical method for determining the mechanical response of a condenser microphone
,”
J. Acoust. Soc. Am.
130
,
3698
3705
(
2011
).
10.
J.
Berqvist
, “
Finite Element modeling and characterization of a silicon condenser microphone with a highly perforated backplate
,”
Sens. Actuat. A
39
,
191
200
(
1993
).
11.
P. R.
Scheeper
,
W.
Olthuis
, and
P.
Bergveld
, “
Improvement of the performance of microphones with a silicon nitride diaphragm and backplate
,”
Sens. Actuat. A
40
,
179
186
(
1994
).
12.
M.
Pedersen
,
W.
Olthuis
, and
P.
Bergveld
, “
A silicon microphone with polyimide diaphragm and backplate
,”
Sens. Actuat. A
63
,
97
104
(
1997
).
13.
P. C.
Hsu
,
C. H.
Mastrangelo
, and
K. D.
Wise
, “
A high sensitivity polysilicon diaphragm condenser microphone
,” in
MEMS Conference
,
Heidelberg, Germany
(
January 25–29
,
1998
), pp.
580
585
.
14.
R.
Nadal-Guardia
,
A.
Maria Brosa
, and
A.
Dehé
, “
AC transfer function of electrostatic capacitive sensors based on the 1-D equivalent model: Application to silicon microphones
,”
J. Microelectromech. Syst.
12
,
972
978
(
2003
).
15.
C. H.
Huang
,
C. H.
,
Lee
,
T. M.
Hsieh
,
L. C.
Tsao
,
S.
Wu
,
J. C.
Liou
,
M. Y.
Wang
,
L. C.
Chen
,
M. C.
Yip
, and
W.
Fang
, “
Implementation of the CMOS MEMS condenser microphone with corrugated metal diaphragm and silicon back-plate
,”
Sensors
11
,
6257
6269
(
2011
).
16.
J. S.
Krause
,
J. M.
Gallman
,
M. J.
Moeller
, and
R. D.
White
, “
A microphone array on a chip for high spatial resolution measurements of turbulence
,”
J. Microelectromech. Syst.
23
,
1164
1181
(
2014
).
17.
C. H.
Je
,
J.
Lee
,
S. Q.
Lee
, and
W. S.
Yang
, “
The effect of back-chamber volume on the surface micromachined acoustic sensor
,”
in IEEE Sensors 2014
,
Valencia, Spain
(
November 2014
), pp.
1184
1187
.
18.
C. H.
Je
,
J.
Lee
,
W. S.
Yang
,
J.
Kim
, and
Y.-H.
Cho
, “
A surface-micromachined capacitive microphone with improved sensitivity
,”
J. Micromech. Microeng.
23
,
055018
(
2013
).
19.
M. L.
Kuntzman
and
N. A.
Hall
, “
A broadband, capacitive, surface-micromachined, omnidirectional microphone with more than 200 kHz bandwidth
,”
J. Acoust. Soc. Am.
135
,
3416
3424
(
2014
).
20.
Bruel&Kjaer
, “
Product Data, Condenser Microphone Cartridges–Types 4133 to 4181
,” in
Company Documentation
(
Naerum
,
Denmark
),
16
pp.
21.
P. R.
Scheeper
,
B.
Nordstrand
,
J. O.
Gullov
,
B.
Liu
,
T.
Clausen
,
L.
Midjord
, and
T.
Storgaard-Larsen
, “
A new measurement microphone based on MEMS technology
,”
J. Microelectromech. Syst.
12
,
880
891
(
2003
).
22.
D.
Ekeom
and
L.
Rufer
, “
Modeling of wide frequency range silicon microphone for acoustic measurement
,” in
Proceedings of the Acoustics 2012 Conference
,
Nantes, France
(
April 2012
), pp.
3361
3366
.
23.
M.
Bao
and
H.
Yang
, “
Squeeze film air damping in MEMS
,”
Sens. Actuat. A
136
,
3
27
(
2007
).
24.
S. S.
Mohite
,
V. R.
Sonti
, and
R.
Pratap
, “
A compact squeeze-film model including inertia, compressibility and rarefaction effects for perforated 3-D MEMS structures
,”
J. Microelectromech. Syst.
17
,
709
723
(
2008
).
25.
T.
Veijola
, “
Compact model for a MEM perforation cell with viscous, spring, and inertial forces
,”
Microfluid. Nanofluid.
6
,
203
219
(
2009
).
26.
A. K.
Pandey
and
R.
Pratap
, “
Influence of boundary conditions on the dynamic characteristics of squeeze films in MEMS devices
,”
J. Microelectromech. Syst.
16
,
893
903
(
2007
).
27.
Z.
Skvor
,
Vibrating Systems and Their Equivalent Circuits
(
Elsevier
,
New York
,
1991
),
244
pp.
28.
T.
Veijola
, “
Analytic damping model for an MEM perforation cell
,”
Microfluid. Nanofluid.
2
,
249
260
(
2006
).
29.
T.
Veijola
, “
Analytic damping model for a square perforation cell
,”
NSTI- Nanotech
3
,
554
557
(
2006
).
30.
M.
Bruneau
,
Manuel d'Acoustique Fondamentale
(Basic Acoustics Manual) (
Hermès Sciences Publication
,
France
,
1998
),
576
pp.
31.
T. B.
Gabrielson
, “
Mechanical thermal noise in micromachined acoustic and vibration sensors
,”
IEEE Trans. Electron Devices
40
,
903
909
(
1993
).
32.
G. S. K.
Wong
, “
Microphone data applications
,” in
AIP Handbook of Condenser Microphone: Theory, Calibration and Measurements
, edited by
G. S. K.
Wong
and
T. F. W.
Embleton
(
AIP
,
New York
,
1995
), Chap. 19, pp.
291
301
.
33.
C. W.
Tan
and
J. M.
Miao
, “
Modified Skvor/Starr approach in the mechanical-thermal noise analysis of condenser microphone
,”
J. Acoust. Soc. Am.
126
,
2301
2305
(
2009
).
34.
V.
Tarnow
, “
The lower limit of detectable sound pressure
,”
J. Acoust. Soc. Am.
82
,
379
381
(
1987
).
You do not currently have access to this content.