Sound propagation over the ground with a random spatially-varying surface admittance is investigated. Starting from the Green's theorem, a Dyson equation is derived for the coherent acoustic pressure. Under the Bourret approximation, an explicit expression is deduced and an effective admittance that depends on the correlation function of the admittance fluctuations is exhibited. An asymptotic expression at long range is then obtained. Influence of the randomness on the amplitude of the reflection coefficient and on the wavenumbers of the surface wave component is analyzed. Afterwards, numerical simulations of the linearized Euler equations are carried out and the coherent pressure obtained by an ensemble-averaging over 200 realizations of the admittance is found to be in good agreement with the analytical solution. In the considered examples of grounds, the mean intensity is shown to be similar to the intensity in the non-random case, except near interferences that are smoothened out due to randomness. It is however exemplified that the intensity fluctuations can be large, especially near destructive interferences.

1.
M.
Bérengier
,
B.
Gauvreau
,
P.
Blanc-Benon
, and
D.
Juvé
, “
Outdoor sound propagation: A short review on analytical and numerical approaches
,”
Acta Acust. united Acust.
89
,
980
991
(
2003
).
2.
E. M.
Salomons
,
Computational Atmospheric Acoustics
(
Kluwer Academic Publishers
,
Dordrecht, the Netherlands
,
2001
), pp.
1
335
.
3.
T.
van Renterghem
, “
Efficient outdoor sound propagation modeling with the finite-difference time-domain (FDTD) method: A review
,”
Int. J. Aeroacoust.
13
(
5–6
),
385
404
(
2014
).
4.
V. E.
Ostashev
and
D. K.
Wilson
,
Acoustics in Moving Inhomogeneous Media
, 2nd ed. (
CRC Press
,
Boca Raton, FL
,
2016
), Chaps. 10, 11, 12, and 13.
5.
B.
Lihoreau
,
B.
Gauvreau
,
M.
Bérengier
,
P.
Blanc-Benon
, and
I.
Calmet
, “
Outdoor sound propagation modeling in realistic environments: Application of coupled parabolic and atmospheric models
,”
J. Acoust. Soc. Am.
120
(
1
),
110
119
(
2006
).
6.
D.
Dragna
,
P.
Blanc-Benon
, and
F.
Poisson
, “
Impulse propagation over a complex site: A comparison of experimental results and numerical predictions
,”
J. Acoust. Soc. Am.
135
(
3
),
1096
1105
(
2014
).
7.
D. K.
Wilson
,
E. L.
Andreas
,
J. W.
Weatherly
,
C. L.
Pettit
,
E. G.
Patton
, and
P. P.
Sullivan
, “
Characterization of uncertainty in outdoor sound propagation predictions
,”
J. Acoust. Soc. Am.
121
(
5
),
EL177
EL183
(
2007
).
8.
E.
Brandão
,
A.
Lenzi
, and
S.
Paul
, “
A review of the in situ impedance and sound absorption measurement techniques
,”
Acta Acust. united Acust.
101
,
443
463
(
2015
).
9.
R.
Kruse
and
V.
Mellert
, “
Effect and minimization of errors in in situ ground impedance measurements
,”
Appl. Acoust.
69
,
884
890
. (
2008
).
10.
D.
Dragna
,
K.
Attenborough
, and
P.
Blanc-Benon
, “
On the inadvisability of using single parameter impedance models for representing the acoustical properties of ground surfaces
,”
J. Acoust. Soc. Am.
138
(
4
),
2399
2413
(
2015
).
11.
G.
Guillaume
,
O.
Faure
,
B.
Gauvreau
,
F.
Junker
,
M.
Bérengier
, and
P.
L'Hermite
, “
Estimation of impedance model input parameters from in situ measurements: Principles and applications
,”
Appl. Acoust.
95
,
27
36
(
2015
).
12.
A. J.
Cramond
and
C. G.
Don
, “
Effects of moisture content on soil impedance
,”
J. Acoust. Soc. Am.
82
(
1
),
293
301
(
1987
).
13.
B.
Gauvreau
, “
Long-term experimental database for environmental acoustics
,”
Appl. Acoust.
74
,
958
967
(
2013
).
14.
V. E.
Ostashev
,
D. K.
Wilson
, and
S. N.
Vecherin
, “
Effect of randomly varying impedance on the interference of the direct and ground-reflected waves
,”
J. Acoust. Soc. Am.
130
(
4
),
1844
1850
(
2011
).
15.
J. G.
Watson
and
J. B.
Keller
, “
Reflection, scattering, and absorption of acoustic waves by rough surfaces
,”
J. Acoust. Soc. Am.
74
(
6
),
1887
1894
(
1983
).
16.
J. G.
Watson
and
J. B.
Keller
, “
Rough surface scattering via the smoothing method
,”
J. Acoust. Soc. Am.
75
(
6
),
1705
1708
(
1984
).
17.
S. N.
Chandler-Wilde
and
D. C.
Hothersall
, “
Sound propagation above an inhomogeneous impedance plane
,”
J. Sound Vib.
98
(
4
),
475
494
(
1985
).
18.
U.
Frisch
, “
Wave propagation in random media
,” in
Probabilistic Methods in Applied Mathematics
, edited by
A. T.
Bharucha-Reid
(
Academic Press Inc.
,
London, UK
,
1968
), pp.
75
198
.
19.
V. I.
Tatarskii
,
The Effects of the Turbulent Atmosphere on Wave Propagation
(
Israel Program for Scientific Translation
,
Jerusalem, Israel
,
1971
), Chap. 5, pp.
335
364
.
20.
S. M.
Rytov
,
Y. A.
Kravtsov
, and
V. I.
Tatarskii
,
Principles of Statistical Radiophysics. Part 4, Wave Propagation Through Random Media
, 2nd ed. (
Springer
,
Berlin
,
1989
), pp.
139
141
.
21.
A.
Derode
,
V.
Mamou
, and
A.
Tourin
, “
Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium
,”
Phys. Rev. E
74
,
036606
(
2006
).
22.
O.
Faure
,
B.
Gauvreau
,
F.
Junker
,
P.
Lafon
, and
C.
Bourlier
, “
Modelling of random ground roughness by an effective impedance and application to time-domain methods
,”
Appl. Acoust.
119
,
1
8
(
2017
).
23.
A.
Ishimaru
,
J. D.
Rockway
,
Y.
Kuga
, and
S.-W.
Lee
, “
Sommerfeld and Zenneck wave propagation for a finitely conducting one-dimensional rough surface
,”
IEEE Trans. Antennas Propag.
48
(
9
),
1475
1484
(
2000
).
24.
S. F.
Chien
and
W. W.
Soroka
, “
Sound propagation along an impedance plane
,”
J. Sound Vib.
43
(
1
),
9
20
(
1975
).
25.
L. M.
Brekhovskikh
and
O. A.
Godin
,
Acoustics of Layered Media II
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1999
), Appendix A.3, formula A.3.4.
26.
E. J.
Brambley
and
G.
Gabard
, “
Reflection of an acoustic line source by an impedance surface with uniform flow
,”
J. Sound Vib.
333
(
21
),
5548
5565
(
2014
).
27.
K.
Attenborough
,
K. M.
Li
, and
K.
Horoshenkov
,
Predicting Outdoor Sound
(
Taylor & Francis
,
London
,
2007
) Chap. 2, p.
42
.
28.
D.
Dragna
and
P.
Blanc-Benon
, “
Physically admissible impedance models for time-domain computations of outdoor sound propagation
,”
Acta Acust. united Acust.
100
(
3
),
401
410
(
2014
).
29.
M.
Bérengier
,
M. R.
Stinson
,
G. A.
Daigle
, and
J. F.
Hamet
, “
Porous road pavements: Acoustical characterization and propagation effects
,”
J. Acoust. Soc. Am.
101
(
1
),
155
162
(
1997
).
30.
D.
Dragna
,
P.
Blanc-Benon
, and
F.
Poisson
, “
Time-domain solver in curvilinear coordinates for outdoor sound propagation over complex terrain
,”
J. Acoust. Soc. Am.
133
(
6
),
3751
3763
(
2013
).
31.
C.
Bogey
and
C.
Bailly
, “
A family of low dispersive and low dissipative explicit schemes for noise computation
,”
J. Comput. Phys.
194
(
1
),
194
214
(
2004
).
32.
L.
Ehrhardt
,
S.
Cheinet
,
D.
Juvé
, and
P.
Blanc-Benon
, “
Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation
,”
J. Acoust. Soc. Am.
133
(
4
),
1922
1933
(
2013
).
33.
R.
Troian
,
D.
Dragna
,
C.
Bailly
, and
M.-A.
Galland
, “
Broadband liner impedance education for multimodal acoustic propagation in the presence of a mean flow
,”
J. Sound Vib.
392
,
200
216
(
2017
).
34.
K. U.
Ingard
and
G. C.
Maling
, “
On the effect of atmospheric turbulence on sound propagated over ground
,”
J. Acoust. Soc. Am.
35
(
7
),
1056
1058
(
1963
).
35.
P.
Chevret
,
P.
Blanc-Benon
, and
D.
Juvé
, “
A numerical model for sound propagation through a turbulent atmosphere near the ground
,”
J. Acoust. Soc. Am.
100
(
6
),
3587
3599
(
1996
).
36.
M. J. M.
Martens
,
L. A. M.
van der Heijden
,
H. H. J.
Walthaus
, and
W. J. J. M.
van Rens
, “
Classification of soils based on acoustic impedance, air flow resistivity, and other physical soil parameters
,”
J. Acoust. Soc. Am.
78
(
3
),
970
980
(
1985
).
You do not currently have access to this content.