Elastography is a non-invasive imaging technique that can assess in vivo tissue stiffness. In shear wave elastography imaging, the acoustic radiation force (ARF) produced by focused ultrasound generates a local force that produces shear waves. The authors compare three existing formulations for the ARF: its full expression in the second-order approximation and two simplified formulations using a quasi-plane wave and an attenuated plane wave approximation. Analytical expressions for the ARF are derived for the special cases of a concave spherical source and a quasi-Gaussian beam. They provide expressions for the resulting ARF and show discrepancies between the different formulations. For strongly divergent or highly focused beams the ARF expressed by the second-order approximation significantly differs from both simplified formulations. However, despite those differences the second-order and quasi-plane wave approximations create identical shear displacements in tissue. To compute the ARF and the displacements produced by a conventional ultrasound probe, the three formulations were incorporated into the k-Wave simulation package. The second-order and quasi-plane wave approximations give different forces but nearly identical displacements while the plane wave approximation significantly differs. It is concluded that to properly take into account the ultrasound field structure, the second-order or quasi-plane wave approximations should be preferably used.

1.
J.-L.
Gennisson
,
T.
Deffieux
,
M.
Fink
, and
M.
Tanter
, “
Ultrasound elastography: Principles and techniques
,”
Diagn. Interv. Imag.
94
(
5
),
487
495
(
2013
).
2.
J. R.
Doherty
,
G. E.
Trahey
,
K. R.
Nightingale
, and
M. L.
Palmeri
, “
Acoustic radiation force elasticity imaging in diagnostic ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
(
4
),
685
701
(
2013
).
3.
R.
Sinkus
,
M.
Tanter
,
T.
Xydeas
,
S.
Catheline
,
J.
Bercoff
, and
M.
Fink
, “
Viscoelastic shear properties of in vivo breast lesions measured by mr elastography
,”
Magn. Reson. Imag.
23
(
2
),
159
165
(
2005
).
4.
E. E.
Konofagou
,
C.
Maleke
, and
J.
Vappou
, “
Harmonic motion imaging (HMI) for tumor imaging and treatment monitoring
,”
Curr. Med. Imag. Rev.
8
(
1
),
16
26
(
2012
).
5.
A. P.
Sarvazyan
,
O. V.
Rudenko
, and
W. L.
Nyborg
, “
Biomedical applications of radiation force of ultrasound: Historical roots and physical basis
,”
Ultrasound Med. Biol.
36
(
9
),
1379
1394
(
2010
).
6.
M. L.
Palmeri
,
A. C.
Sharma
,
R. R.
Bouchard
,
R. W.
Nightingale
, and
K. R.
Nightingale
, “
A finite-element method model of soft tissue response to impulsive acoustic radiation force
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
(
10
),
1699
1712
(
2005
).
7.
K. R.
Nightingale
,
R. W.
Nightingale
,
M. L.
Palmeri
, and
G. E.
Trahey
, “
A finite element model of remote palpation of breast lesions using radiation force: Factors affecting tissue displacement
,”
Ultrasonic Imag.
22
(
1
),
35
54
(
2000
).
8.
S.
Callé
,
J.-P.
Remeniéras
,
O.
Bou Matar
,
M. E.
Hachemi
, and
F.
Patat
, “
Temporal analysis of tissue displacement induced by a transient ultrasound radiation force
,”
J. Acoust. Soc. Am.
118
(
5
),
2829
2840
(
2005
).
9.
C.
Bastard
,
J.-P.
Remeniéras
,
S.
Callé
, and
L.
Sandrin
, “
Simulation of shear wave propagation in a soft medium using a pseudospectral time domain method
,”
J. Acoust. Soc. Am.
126
(
4
),
2108
2116
(
2009
).
10.
L. D.
Landau
and
E. M.
Lifshitz
, “
Ideal fluids
,” in
Fluid Mechanics, Vol. 6 of Course of Theoretical Physics
, 2nd ed. (
Pergamon Press
,
Oxford, England
,
1987
), Chap. 1, pp.
1
43
.
11.
C. P.
Lee
and
T. G.
Wang
, “
Acoustic radiation pressure
,”
J. Acoust. Soc. Am.
94
(
2
),
1099
1109
(
1993
).
12.
S. D.
Danilov
and
M. A.
Mironov
, “
Mean force on a small sphere in a sound field in a viscous fluid
,”
J. Acoust. Soc. Am.
107
(
1
),
143
153
(
2000
).
13.
T.
Hasegawa
,
T.
Kido
,
T.
Iizuka
, and
C.
Matsuoka
, “
A general theory of Rayleigh and Langevin radiation pressures
,”
J. Acoust. Soc. Jpn.
21
(
3
),
145
152
(
2000
).
14.
W. L.
Nyborg
, “
Acoustic streaming
,” in
Physical Acoustics
, edited by
W. P.
Mason
(
Academic Press
,
New York
,
1965
), Vol.
2
Pt. B, Chap. 11, pp.
265
331
.
15.
P.
Glynne-Jones
,
P. P.
Mishra
,
R. J.
Boltryk
, and
M.
Hill
, “
Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry
,”
J. Acoust. Soc. Am.
133
(
4
),
1885
1893
(
2013
).
16.
O. A.
Sapozhnikov
and
M. R.
Bailey
, “
Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid
,”
J. Acoust. Soc. Am.
133
(
2
),
661
676
(
2013
).
17.
H.
Saraf
,
K. T.
Ramesh
,
A. M.
Lennon
,
A. C.
Merkle
, and
J. C.
Roberts
, “
Mechanical properties of soft human tissues under dynamic loading
,”
J. Biomech.
40
(
9
),
1960
1967
(
2007
).
18.
H. C.
Starritt
,
F. A.
Duck
, and
V. F.
Humphrey
, “
Forces acting in the direction of propagation in pulsed ultrasound fields
,”
Phys. Med. Biol.
36
(
11
),
1465
1474
(
1991
).
19.
K. R.
Nightingale
,
M. L.
Palmeri
,
R. W.
Nightingale
, and
G. E.
Trahey
, “
On the feasibility of remote palpation using acoustic radiation force
,”
J. Acoust. Soc. Am.
110
(
1
),
625
634
(
2001
).
20.
O. A.
Sapozhnikov
, “
An exact solution to the Helmholtz equation for a quasi-Gaussian beam in the form of a superposition of two sources and sinks with complex coordinates
,”
Acoust. Phys.
58
,
41
47
(
2012
).
21.
H. T.
O'Neil
, “
Theory of focusing radiators
,”
J. Acoust. Soc. Am.
21
(
5
),
516
526
(
1949
).
22.
P. L.
Marston
, “
Quasi-Gaussian Bessel-beam superposition: Application to the scattering of focused waves by spheres
,”
J. Acoust. Soc. Am.
129
(
4
),
1773
1782
(
2011
).
23.
P. L.
Marston
, “
Quasi-Gaussian beam analytical basis and comparison with an alternative approach (L)
,”
J. Acoust. Soc. Am.
130
(
3
),
1091
1094
(
2011
).
24.
J.
Lighthill
, “
Acoustic streaming
,”
J. Sound Vib.
61
(
3
),
391
418
(
1978
).
25.
O. A.
Sapozhnikov
, “
High-intensity ultrasonic waves in fluids: Nonlinear propagation and effects
,” in
Power Ultrasonics: Applications of High-intensity Ultrasound
, No. 66 in Series in Electronic and Optical Materials, edited by
J. A.
Gallego Juárez
and
K. F.
Graff
(
Woodhead Publishing
,
Cambridge, UK
,
2015
), Chap.
2
, pp.
9
32
.
26.
B. E.
Treeby
,
J.
Jaros
,
A. P.
Rendell
, and
B. T.
Cox
, “
Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method
,”
J. Acoust. Soc. Am.
131
(
6
),
4324
4336
(
2012
).
27.
F.
Prieur
and
S.
Catheline
, “
Simulation of shear wave elastography imaging using the toolbox ‘k-Wave,’
 ” in
Proceedings of the 172nd Meeting Acoustical Society of America
, Vol.
29
,
Honolulu, HI
(December
2016
), p.
020002
.
28.
B. E.
Treeby
,
J.
Jaros
,
D.
Rohrbach
, and
B.
Cox
, “
Modelling elastic wave propagation using the k-Wave Matlab toolbox
,” in
Proceedings of the IEEE Ultrasonic Symposium
,
Chicago, IL
(
2014
), pp.
146
149
.
29.
K.
Firouzi
,
B. T.
Cox
,
B. E.
Treeby
, and
N.
Saffary
, “
A first-order k-space model for elastic wave propagation in heterogeneous media
,”
J. Acoust. Soc. Am.
132
(
3
),
1271
1283
(
2012
).
30.
B.
Treeby
,
B.
Cox
, and
J.
Jaros
,
k-Wave A MATLAB Toolbox for the Time Domain Simulation of Acoustic Wave Fields—User Manual
,
November
2012
. Manual Version 1.0.1 http://www.k-wave.org/manual/k-wave_user_manual_1.0.1.pdf (Last viewed July 10, 2017).
31.
L.
Ostrovsky
,
A.
Sutin
,
Y.
Il'inskii
,
O.
Rudenko
, and
A.
Sarvazyan
, “
Radiation force and shear motions in inhomogeneous media
,”
J. Acoust. Soc. Am.
121
(
3
),
1324
1331
(
2007
).
32.
O. V.
Rudenko
,
A. P.
Sarvazyan
, and
S. Y.
Emelianov
, “
Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium
,”
J. Acoust. Soc. Am.
99
(
5
),
2791
2798
(
1996
).
You do not currently have access to this content.