Sound generation due to an orifice plate in a hard-walled flow duct which is commonly used in air distribution systems (ADS) and flow meters is investigated. The aim is to provide an understanding of this noise generation mechanism based on measurements of the source pressure distribution over the orifice plate. A simple model based on Curle's acoustic analogy is described that relates the broadband in-duct sound field to the surface pressure cross spectrum on both sides of the orifice plate. This work describes careful measurements of the surface pressure cross spectrum over the orifice plate from which the surface pressure distribution and correlation length is deduced. This information is then used to predict the radiated in-duct sound field. Agreement within 3 dB between the predicted and directly measured sound fields is obtained, providing direct confirmation that the surface pressure fluctuations acting over the orifice plates are the main noise sources. Based on the developed model, the contributions to the sound field from different radial locations of the orifice plate are calculated. The surface pressure is shown to follow a U3.9 velocity scaling law and the area over which the surface sources are correlated follows a U1.8 velocity scaling law.

1.
N. K.
Agarwal
, “
The sound field in fully developed turbulent pipe flow due to internal flow separation, part I: Wall-pressure fluctuations
,”
J. Sound Vib.
169
(
1
),
89
109
(
1994
).
2.
N. K.
Agarwal
, “
The sound field in fully developed turbulent pipe flow due to internal flow separation, part II: Modal amplitude and cut-off frequencies
,”
J. Sound Vib.
175
(
1
),
65
76
(
1994
).
3.
N. K.
Agarwal
and
M. K.
Bull
, “
Characteristics of the flow separation due to an orifice plate in fully-developed turbulent pipe-flow
,” in
Proceedings of the Eighth Australasian Fluid Mechanics Conference
,
Newcastle, New South Wales, Australia
(
November 28–December 2, 1983
) pp.
4B. 1
4B. 4
.
4.
N. K.
Agarwal
, “
Mean separation and reattachment in turbulent pipe flow due to an orifice plate
,”
J. Fluids Eng.
116
(
2
),
373
376
(
1994
).
5.
F.
Durst
and
A. B.
Wang
, “
Experimental and numerical investigations of the axisymmetric, turbulent pipe flow over a wall-mounted thin obstacle
,” in
Proceedings of 7th Symposium on Turbulent Shear Flows
, Vol.
1
(
The Pennsylvania State University Press, University Park, PA
,
1989
), pp.
10.4.1
10.4.6
.
6.
G. H.
Nail
, “
A study of 3-dimensional flow through orifice meters
,” Ph.D. thesis,
Texas A&M University
,
College Station, TX
,
1991
.
7.
S.
Feng
,
F.
Atsushi
,
T.
Tatsuya
, and
T.
Yoshiyuki
, “
Particle image velocimetry measurements of flow field behind a circular square-edged orifice in a round pipe
,”
Exp. Fluids.
54
,
1553
(
2013
).
8.
E. J.
Kerschen
and
J. P.
Johnston
, “
Mode selective transfer of energy from sound propagating inside circular pipes to pipe wall vibration
,”
J. Acoust. Soc. Am.
67
,
1931
1934
(
1980
).
9.
E. J.
Kerschen
and
J. P.
Johnston
, “
A modal separation measurement technique for broadband noise propagating inside circular ducts
,”
J. Sound Vib.
76
(
4
),
499
515
(
1981
).
10.
E. J.
Kerschen
and
J. P.
Johnston
, “
Modal content of noise generated by a coaxial jet in a pipe
,”
J. Sound Vib.
76
(
1
),
95
115
(
1981
).
11.
C. G.
Gordon
, “
Spoiler generated flow noise. I. The experiment
,”
J. Acoust. Soc. Am.
43
,
1041
1048
(
1968
).
12.
C. G.
Gordon
, “
Spoiler generated flow noise. II. Results
,”
J. Acoust. Soc. Am.
45
,
214
223
(
1969
).
13.
P. A.
Nelson
and
C. L.
Morfey
, “
Aerodynamic sound production in low speed flow ducts
,”
J. Sound Vib.
79
(
2
),
263
289
(
1981
).
14.
D. J.
Oldham
and
A. U.
Ukpoho
, “
A pressure-based technique for predicting regenerated noise levels in ventilation systems
,”
J. Sound Vib.
140
(
2
),
259
272
(
1990
).
15.
O.
Kårekull
,
E.
Gunilla
, and
A.
Mats
, “
Revisiting the Nelson-Morfey scaling law for flow noise from duct constrictions
,”
J. Sound Vib.
357
,
233
244
(
2015
).
16.
N.
Curle
, “
The influence of solid boundaries upon aerodynamic sound
,”
Proc. R. Soc. A
231
,
505
514
(
1955
).
17.
M.
Goldstein
,
Aeroacoustics
(
McGraw-Hill
,
New York
,
1976
).
You do not currently have access to this content.