A variety of ultrasonic techniques have been developed to detect changes in bone caused by osteoporosis. One approach, called the backscatter difference technique, analyzes the power difference between two different portions of a backscatter signal. Analysis gates with a certain delay τd, width τw, and separation τs are used to define portions of the backscatter signal for analysis. The goal of the present study was to investigate how different choices of τd, τw, and τs affect four backscatter difference parameters: the normalized mean of the backscatter difference (nMBD), the normalized slope of the backscatter difference (nSBD), the normalized intercept of the backscatter difference (nIBD), and the normalized backscatter amplitude ratio (nBAR). Backscatter measurements were performed on 54 cube shaped specimens of human cancellous bone. nMBD, nSBD, nIBD, and nBAR were determined for 34 different combinations of τd, τw, and τs for each specimen. nMBD and nBAR demonstrated the strongest correlations with apparent bone density (0.48 ≤ Rs ≤ 0.90). Generally, the correlations were found to improve as τw + τs was increased and as τd was decreased. Among the four backscatter difference parameters, the measured values of nMBD were least sensitive to gate choice (<16%).

1.
A.
Oden
,
E. V.
McCloskey
,
J. A.
Kanis
,
N. C.
Harvey
, and
H.
Johansson
, “
Burden of high fracture probability worldwide: Secular increases 2010–2040
,”
Osteoporos. Int.
26
,
2243
2248
(
2015
).
2.
B. L.
Riggs
and
L. J.
Melton
, 3rd
, “
The worldwide problem of osteoporosis: Insights afforded by epidemiology
,”
Bone
17
,
505S
511S
(
1995
).
3.
C.
Cooper
, “
The crippling consequences of fractures and their impact on quality of life
,”
Am. J. Med.
103
,
12S
19S
(
1997
).
4.
G. S.
Keene
,
M. J.
Parker
, and
G. A.
Pryor
, “
Mortality and morbidity after hip fractures
,”
BMJ
307
,
1248
1250
(
1993
).
5.
J.
Magaziner
,
W.
Hawkes
,
J. R.
Hebel
,
S. I.
Zimmerman
,
K. M.
Fox
,
M.
Dolan
,
G.
Felsenthal
, and
J.
Kenzora
, “
Recovery from hip fracture in eight areas of function
,”
J. Gerontol. A Biol. Sci. Med. Sci.
55
,
M498
M507
(
2000
).
6.
P.
Pisani
,
M. D.
Renna
,
F.
Conversano
,
E.
Casciaro
,
M.
Muratore
,
E.
Quarta
,
M. D.
Paola
, and
S.
Casciaro
, “
Screening and early diagnosis of osteoporosis through X-ray and ultrasound based techniques
,”
World J. Radiol.
5
,
398
410
(
2013
).
7.
E. M.
Lewiecki
, “
Bone densitometry and vertebral fracture assessment
,”
Curr. Osteoporos. Rep.
8
,
123
130
(
2010
).
8.
R.
Barkmann
,
P.
Laugier
,
U.
Moser
,
S.
Dencks
,
F.
Padilla
,
G.
Haiat
,
M.
Heller
, and
C. C.
Gluer
, “
A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur
,”
Bone
40
,
37
44
(
2007
).
9.
Q.
Grimal
,
J.
Grondin
,
S.
Guerard
,
R.
Barkmann
,
K.
Engelke
,
C. C.
Gluer
, and
P.
Laugier
, “
Quantitative ultrasound of cortical bone in the femoral neck predicts femur strength: Results of a pilot study
,”
J. Bone Miner. Res.
28
,
302
312
(
2013
).
10.
V.
Roberjot
,
P.
Laugier
,
P.
Droin
,
P.
Giat
, and
G.
Berger
, “
Mesaurement of integrated backscatter coefficient of trabecular bone
,”
Proc. IEEE Ultrason. Symp.
2
,
1123
1126
(
1996
).
11.
K. A.
Wear
and
B. S.
Garra
, “
Assessment of bone density using ultrasonic backscatter
,”
Ultrasound Med. Biol.
24
,
689
695
(
1998
).
12.
P.
Laugier
,
P.
Giat
,
C.
Chappard
,
C.
Roux
, and
G.
Berger
, “
Clinical assessment of the backscatter coefficient in osteoporosis
,”
Proc. IEEE Ultrason. Symp.
2
,
1101
1104
(
1997
).
13.
K. A.
Wear
, “
Frequency dependence of ultrasonic backscatter from human trabecular bone: Theory and experiment
,”
J. Acoust. Soc. Am.
106
,
3659
3664
(
1999
).
14.
K. A.
Wear
, “
Anisotropy of ultrasonic backscatter and attenuation from human calcaneus: Implications for relative roles of absorption and scattering in determining attenuation
,”
J. Acoust. Soc. Am.
107
,
3474
3479
(
2000
).
15.
S.
Chaffai
,
V.
Roberjot
,
F.
Peyrin
,
G.
Berger
, and
P.
Laugier
, “
Frequency dependence of ultrasonic backscattering in cancellous bone: Autocorrelation model and experimental results
,”
J. Acoust. Soc. Am.
108
,
2403
2411
(
2000
).
16.
K. A.
Wear
,
A. P.
Stuber
, and
J. C.
Reynolds
, “
Relationships of ultrasonic backscatter with ultrasonic attenuation, sound speed and bone mineral density in human calcaneus
,”
Ultrasound Med. Biol.
26
,
1311
1316
(
2000
).
17.
B. K.
Hoffmeister
,
S. A.
Whitten
, and
J. Y.
Rho
, “
Low-megahertz ultrasonic properties of bovine cancellous bone
,”
Bone
26
,
635
642
(
2000
).
18.
F.
Conversano
,
R.
Franchini
,
A.
Greco
,
G.
Soloperto
,
F.
Chiriaco
,
E.
Casciaro
,
M.
Aventaggiato
,
M. D.
Renna
,
P.
Pisani
,
M.
Di Paola
,
A.
Grimaldi
,
L.
Quarta
,
E.
Quarta
,
M.
Muratore
,
P.
Laugier
, and
S.
Casciaro
, “
A novel ultrasound methodology for estimating spine mineral density
,”
Ultrasound Med. Biol.
41
,
281
300
(
2015
).
19.
B. S.
Garra
,
M.
Locher
,
S.
Felker
, and
K. A.
Wear
, “
Measurements of ultrasonic backscattered spectral centroid shift from spine in vivo: Methodology and preliminary results
,”
Ultrasound Med. Biol.
35
,
165
168
(
2009
).
20.
B. K.
Hoffmeister
,
M. R.
Smathers
,
C. J.
Miller
,
J. A.
McPherson
,
C. R.
Thurston
,
P. L.
Spinolo
, and
S. R.
Lee
, “
Backscatter-difference measurements of cancellous bone using an ultrasonic imaging system
,”
Ultrason Imag.
38
,
285
297
(
2016
).
21.
J.
Litniewski
,
L.
Cieslik
,
M.
Lewandowski
,
R.
Tymkiewicz
,
B.
Zienkiewicz
, and
A.
Nowicki
, “
Ultrasonic scanner for in vivo measurement of cancellous bone properties from backscattered data
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
59
,
1470
1477
(
2012
).
22.
T.
De Marco
,
M.
Peccarisi
,
F.
Conversano
,
A.
Greco
,
S.
Chiozzic
,
F.
De Pascalisc
, and
S.
Casciarob
, “
A new approach for measuring the trabecular bone density through the echosound backscattering: An ex vivo validation on human femoral heads
,”
Measurement
87
,
51
61
(
2016
).
23.
B. K.
Hoffmeister
,
D. P.
Johnson
,
J. A.
Janeski
,
D. A.
Keedy
,
B. W.
Steinert
,
A. M.
Viano
, and
S. C.
Kaste
, “
Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6–15.0 MHz
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
,
1442
1452
(
2008
).
24.
B. K.
Hoffmeister
,
C. I.
Jones
, 3rd
,
G. J.
Caldwell
, and
S. C.
Kaste
, “
Ultrasonic characterization of cancellous bone using apparent integrated backscatter
,”
Phys. Med. Biol.
51
,
2715
2727
(
2006
).
25.
B. K.
Hoffmeister
,
S. A.
Whitten
,
S. C.
Kaste
, and
J. Y.
Rho
, “
Effect of collagen and mineral content on the high-frequency ultrasonic properties of human cancellous bone
,”
Osteoporos Int.
13
,
26
32
(
2002
).
26.
J. P.
Karjalainen
,
J.
Toyras
,
O.
Riekkinen
,
M.
Hakulinen
, and
J. S.
Jurvelin
, “
Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone
,”
Ultrasound Med. Biol.
35
,
1376
1384
(
2009
).
27.
M. K.
Malo
,
J.
Toyras
,
J. P.
Karjalainen
,
H.
Isaksson
,
O.
Riekkinen
, and
J. S.
Jurvelin
, “
Ultrasound backscatter measurements of intact human proximal femurs—Relationships of ultrasound parameters with tissue structure and mineral density
,”
Bone
64
,
240
245
(
2014
).
28.
M.
Peccarisi
,
T.
De Marco
,
F.
Conversano
,
P.
Pisani
,
L.
Spedicato
,
A.
Greco
,
D.
Panetta
,
G.
Guido
,
V.
Bottai
,
P. A.
Salvadori
, and
S.
Casciaro
, “
In-vitro study of human proximal femur microstructure: Analysis of the relationship between micro-computed tomography data and quantitative ultrasound parameters
,”
IET Sci. Meas. Technol.
10
,
193
199
(
2016
).
29.
Y. Q.
Jiang
,
C. C.
Liu
,
R. Y.
Li
,
W. P.
Wang
,
H.
Ding
,
Q.
Qi
,
D.
Ta
,
J.
Dong
, and
W. Q.
Wang
, “
Analysis of apparent integrated backscatter coefficient and backscattered spectral centroid shift in Calcaneus in vivo for the ultrasonic evaluation of osteoporosis
,”
Ultrasound Med. Biol.
40
,
1307
1317
(
2014
).
30.
J. P.
Karjalainen
,
O.
Riekkinen
,
J.
Toyras
,
M.
Hakulinen
,
H.
Kroger
,
T.
Rikkonen
,
K.
Salovaara
, and
J. S.
Jurvelin
, “
Multi-site bone ultrasound measurements in elderly women with and without previous hip fractures
,”
Osteoporos. Int.
23
,
1287
1295
(
2012
).
31.
B. K.
Hoffmeister
,
P. L.
Spinolo
,
M. E.
Sellers
,
P. L.
Marshall
,
A. M.
Viano
, and
S. R.
Lee
, “
Effect of intervening tissues on ultrasonic backscatter measurements of bone: An in vitro study
,”
J. Acoust. Soc. Am.
138
,
2449
2457
(
2015
).
32.
B. K.
Hoffmeister
,
J. A.
McPherson
,
M. R.
Smathers
,
P. L.
Spinolo
, and
M. E.
Sellers
, “
Ultrasonic backscatter from cancellous bone: The apparent backscatter transfer function
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
62
,
2115
2125
(
2015
).
33.
C.
Liu
,
T.
Tang
,
F.
Xu
,
D.
Ta
,
M.
Matsukawa
,
B.
Hu
, and
W.
Wang
, “
Signal of interest selection standard for ultrasonic backscatter in cancellous bone evaluation
,”
Ultrasound Med. Biol.
41
,
2714
2721
(
2015
).
34.
B. K.
Hoffmeister
, “
Frequency dependence of apparent ultrasonic backscatter from human cancellous bone
,”
Phys. Med. Biol.
56
,
667
683
(
2011
).
35.
B. K.
Hoffmeister
,
A. R.
Wilson
,
M. J.
Gilbert
, and
M. E.
Sellers
, “
A backscatter difference technique for ultrasonic bone assessment
,”
J. Acoust. Soc. Am.
132
,
4069
4076
(
2012
).
36.
R. A.
Sigelmann
and
J. M.
Reid
, “
Analysis and measurement of ultrasound backscattering from an ensemble of scatterers excited by sine-wave bursts
,”
J. Acoust. Soc. Am.
53
,
1351
1355
(
1973
).
37.
M.
O'Donnell
and
J. G.
Miller
, “
Quantitative broadband ultrasonic backscatter: An approach to non-destructive evaluation in acoustically inhomogeneous materials
,”
J. Appl. Phys.
52
,
1056
1065
(
1981
).
You do not currently have access to this content.