As an alternative factor to produce asymmetry between left and right vocal folds, the present study focuses on level difference, which is defined as the distance between the upper surfaces of the bilateral vocal folds in the inferior-superior direction. Physical models of the vocal folds were utilized to study the effect of the level difference on the phonation threshold pressure. A vocal tract model was also attached to the vocal fold model. For two types of different models, experiments revealed that the phonation threshold pressure tended to increase as the level difference was extended. Based upon a small amplitude approximation of the vocal fold oscillations, a theoretical formula was derived for the phonation threshold pressure. This theory agrees with the experiments, especially when the phase difference between the left and right vocal folds is not extensive. Furthermore, an asymmetric two-mass model was simulated with a level difference to validate the experiments as well as the theory. The primary conclusion is that the level difference has a potential effect on voice production especially for patients with an extended level of vertical difference in the vocal folds, which might be taken into account for the diagnosis of voice disorders.

1.
Aoki
,
N.
, and
Ifukube
,
T.
(
1999
). “
Analysis and perception of spectral 1/f characteristics of amplitude and period fluctuations in normal sustained vowels
,”
J. Acoust. Soc. Am.
106
,
423
433
.
2.
Baer
,
T.
,
Löfqvist
,
A.
, and
McGarr
,
N. S.
(
1983
). “
Laryngeal vibrations: A comparison between high-speed filming and glottographic techniques
,”
J. Acoust. Soc. Am.
73
,
1304
1308
.
3.
Berry
,
D. A.
,
Herzel
,
H.
,
Titze
,
I. R.
, and
Story
,
B. H.
(
1996
). “
Bifurcations in excised larynx experiments
,”
J. Voice
10
(
2
),
129
138
.
4.
Chan
,
R. W.
, and
Titze
,
I. R.
(
2006
). “
Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics
,”
J. Acoust. Soc. Am.
119
,
2351
2362
.
5.
Eysholdt
,
U.
,
Rosanowski
,
F.
, and
Hoppe
,
U.
(
2003
). “
Vocal fold vibration irregularities caused by different types of laryngeal asymmetry
,”
Eur. Arch. Otorhinolaryngol.
260
,
412
417
.
6.
Honda
,
K.
,
Kitamura
,
T.
,
Takemoto
,
H.
,
Adachi
,
S.
,
Mokhtari
,
P.
,
Takano
,
S.
,
Nota
,
Y.
,
Hirata
,
H.
,
Fujimoto
,
I.
,
Shimada
,
Y.
,
Masaki
,
S.
,
Fujita
,
S.
, and
Dang
,
J.
(
2010
). “
Visualisation of hypopharyngeal cavities and vocal-tract acoustic modelling
,”
Comput. Methods Biomech. Biomed. Engin.
13
(
4
),
443
453
.
7.
Hong
,
K. H.
, and
Jung
,
K. S.
(
2001
). “
Arytenoid appearance and vertical level difference between the paralyzed and innervated vocal cords
,”
Laryngoscope
111
,
227
232
.
8.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
(
1972
). “
Synthesis of voiced sounds from a two-mass model of the vocal cords
,”
Bell Sys. Tech. J.
51
,
1233
1268
.
9.
Ishizaka
,
K.
, and
Isshiki
,
N.
(
1976
). “
Computer simulation of pathological vocal-cord vibration
,”
J. Acoust. Soc. Am.
60
,
1193
1198
.
10.
Kadota
,
Y.
, and
Yumoto
,
E.
(
1997
). “
Quantification of atrophy of the paralyzed vocal fold and superior-inferior distance between the bilateral vocal folds with the aid of computed radiographic laryngeal tomography
,”
Larynx
9
,
22
26 (in Japanese)
.
11.
Kelly
,
J. L.
, and
Lochbaum
,
C.
(
1962
). “
Speech synthesis
,” in
Proceedings of the Fourth International Congress on Acoustics
, paper G42, pp.
1
4
.
12.
Kitzing
,
P.
(
1985
). “
Stroboscopy—A pertinent laryngological examination
,”
J. Otolaryngol.
14
,
151
157
.
13.
Liljencrants
,
J.
(
1985
). “
Speech synthesis with a reflection-type line analog
,” Doctoral dissertation, Department of Speech Communication and Music Acoustics,
Royal Institute of Technology
,
Stockholm, Sweden
, pp.
1
149
.
14.
Lucero
,
J. C.
,
Schoentgen
,
J.
,
Haas
,
J.
,
Luizard
,
P.
, and
Pelorson
,
X.
(
2015
). “
Self-entrainment of the right and left vocal fold oscillators
,”
J. Acoust. Soc. Am.
137
,
2036
2046
.
15.
Luegmair
,
G.
,
Mehta
,
D. D.
,
Kobler
,
J. B.
, and
Döllinger
,
M.
(
2015
). “
Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system
,”
IEEE Trans. Med. Imaging
34
,
2572
2582
.
16.
Mergell
,
P.
,
Herzel
,
H.
, and
Titze
,
I. R.
(
2000
). “
Irregular vocal-fold vibration—High-speed observation and modeling
,”
J. Acoust. Soc. Am.
108
,
2996
3002
.
17.
Murray
,
P. R.
, and
Thomson
,
S. L.
(
2011
). “
Synthetic, multi-layer, self-oscillating vocal fold model fabrication
,”
J. Vis. Exp.
58
,
e3498
.
18.
Murray
,
P. R.
, and
Thomson
,
S. L.
(
2012
).
“Vibratory responses of synthetic, self-oscillating vocal fold models,”
J. Acoust. Soc. Am.
132
,
3428
3438
.
19.
Neubauer
,
J.
,
Mergell
,
P.
,
Eysholdt
,
U.
, and
Herzel
,
H.
(
2001
). “
Spatio-temporal analysis of irregular vocal fold oscillations: Biphonation due to desynchronization of spatial modes
,”
J. Acoust. Soc. Am.
110
,
3179
3192
.
20.
Omori
,
K.
(
2011
). “
Diagnosis of voice disorders
,”
Jpn. Med. Assoc. J.
54
(
4
),
248
253
.
21.
Oyamada
,
Y.
,
Yumoto
,
E.
,
Nakano
,
K.
, and
Goto
,
H.
(
2005
). “
Asymmetry of the vocal folds in patients with vocal fold immobility
,”
Arch. Otolaryngol. Head. Neck. Surg.
131
(
5
),
399
406
.
22.
Pickup
,
B. A.
, and
Thomson
,
S. L.
(
2010
). “
Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models
,”
J. Acoust. Soc. Am.
128
(
3
),
EL124
EL129
.
23.
Pickup
,
B. A.
, and
Thomson
,
S. L.
(
2011
). “
Identification of geometric parameters influencing the flow-induced vibration of a two-layer self-oscillating computational vocal fold model
,”
J. Acoust. Soc. Am.
129
,
2121
2132
.
24.
Riede
,
T.
,
Tokuda
,
I. T.
,
Munger
,
J. B.
, and
Thomson
,
S. L.
(
2008
). “
Mammalian laryngseal air sacs add variability to the vocal tract impedance: Physical and computational modeling
,”
J. Acoust. Soc. Am.
124
,
634
647
.
25.
Schwarz
,
R.
,
Hoppe
,
U.
,
Schuster
,
M.
,
Wurzbacher
,
T.
,
Eysholdt
,
U.
, and
Lohscheller
,
J.
(
2006
). “
Classification of unilateral vocal fold paralysis by endoscopic digital high-speed recordings and inversion of a biomechanical model
,”
IEEE Trans. Biomed. Eng.
53
,
1099
1108
.
26.
Semmler
,
M.
,
Kniesburges
,
S.
,
Birk
,
V.
,
Ziethe
,
A.
,
Patel
,
P.
, and
Döllinger
,
M.
(
2016
). “
3D reconstruction of human laryngeal dynamics based on endoscopic high-speed recordings
,”
IEEE Trans. Med. Imaging
35
,
1615
1624
.
27.
Sommer
,
D. E.
,
Erath
,
B. D.
,
Zañartu
,
M.
, and
Peterson
,
S. D.
(
2012
). “
Corrected contact dynamics for the Steinecke and Herzel asymmetric two-mass model of the vocal folds
,”
J. Acoust. Soc. Am.
132
(
4
),
EL271
EL276
.
28.
Sommer
,
D. E.
,
Tokuda
,
I. T.
,
Peterson
,
S. D.
,
Sakakibara
,
K.-I.
,
Imagawa
,
H.
,
Yamauchi
,
A.
,
Nito
,
T.
,
Yamasoba
,
T.
, and
Tayama
,
N.
(
2014
). “
Estimation of inferior-superior vocal fold kinematics from high-speed stereo endoscopic data in vivo
,”
J. Acoust. Soc. Am.
136
,
3290
3300
.
29.
Steinecke
,
I.
, and
Herzel
,
H.
(
1995
). “
Bifurcations in an asymmetric vocal fold model
,”
J. Acoust. Soc. Am.
97
,
1571
1578
.
30.
Story
,
B. H.
(
1995
). “
Physiologically-based speech simulation using an enhanced wave-reflection model of the vocal tract
,” Doctoral dissertation, Department of Speech Pathology and Audiology,
University of Iowa
,
Iowa City, IA
, pp.
1
328
.
31.
Thurstone
,
L. L.
(
1927
). “
A law of comparative judgement
,”
Psychol. Rev.
34
,
278
286
.
32.
Tigges
,
M.
,
Mergell
,
P.
,
Herzel
,
H.
,
Wittenberg
,
T.
, and
Eysholdt
,
U.
(
1997
). “
Observation and modelling of glottal biphonation
,”
Acta Acust. Acust.
83
,
707
714
.
33.
Titze
,
I. R.
(
1988
). “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1552
.
34.
Titze
,
I. R.
(
2006
).
Myoelastic Arodynamic Theory of Phonation
(
National Center for Voice and Speech
,
Iowa City, IA
), pp.
297
338
.
35.
Titze
,
I. R.
(
2008
). “
Nonlinear source-filter coupling in phonation: Theory
,”
J. Acoust. Soc. Am.
123
,
2733
2749
.
36.
Titze
,
I. R.
,
Baken
,
R. J.
, and
Herzel
,
H.
(
1993
). “
Evidence of chaos in vocal fold vibration
,” in
Vocal Fold Physiology
, edited by
I. R.
Titze
(
Singular
,
San Diego
), pp.
143
188
.
37.
Zañartu
,
M.
,
Mongeau
,
L.
, and
Wodicka
,
G. R.
(
2007
). “
Influence of acoustic loading on an effective single mass model of the vocal folds
,”
J. Acoust. Soc. Am.
121
,
1119
1129
.
38.
Zhang
,
Z.
(
2009
). “
Characteristics of phonation onset in a two-layer vocal fold model
,”
J. Acoust. Soc. Am.
125
,
1091
1102
.
39.
Zhang
,
Z.
(
2010
). “
Vibration in a self-oscillating vocal fold model with left-right asymmetry in body-layer stiffness
,”
J. Acoust. Soc. Am.
128
,
EL279
EL285
.
40.
Zhang
,
Z.
,
Kreiman
,
J.
, and
Gerratt
,
B. R.
(
2013
). “
Acoustic and perceptual effects of changes in body layer stiffness in symmetric and asymmetric vocal fold models
,”
J. Acoust. Soc. Am.
133
,
453
462
.
41.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2006a
). “
The influence of subglottal acoustics on laboratory models of phonation
,”
J. Acoust. Soc. Am.
120
,
1558
1569
.
42.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2006b
). “
Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds
,”
J. Acoust. Soc. Am.
120
,
2841
2849
.
You do not currently have access to this content.