Sound emissions from impact pile driving of raked piles present a significant azimuthal dependence in the radiated sound field due to the non-axisymmetric orientation of the pile. In this work the sound radiation from raked piles is modeled using a finite element method (FEM) model of the pile and near-field region. The near-field model of the sound field is then used as input into a normal mode model to predict the sound radiation in the far-field. The azimuthal dependence of the radiated sound field is shown to be accurately predicted using an equivalent axisymmetric FEM model of the pile configuration, thus negating the need to construct a fully three-dimensional model (3D) of the raked pile. This is achieved by matching the radiated field from the equivalent axisymmetric pile model to a vertical array of phased point sources, and then horizontally offsetting the source locations to match the incline of the raked pile. The resulting sound field closely matches the numerical predictions from a fully 3D FEM model of the raked pile. The results of numerical modeling are compared to corresponding acoustic measurements taken on the North West shelf of Western Australia.

1.
C.
Erbe
, “
Underwater noise from pile driving in Moreton Bay, Q.L.D.
,”
Acoust. Australia
37
,
87
92
(
2009
).
2.
M. B.
Halvorsen
,
B. M.
Casper
,
F.
Matthews
,
T. J.
Carlson
, and
A. N.
Popper
, “
Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker
,”
Proc. Biol. Sci.
279
,
4705
4714
(
2012
).
3.
J. M.
Miller
,
G. R.
Potty
, and
H.
Kim
, “
Pile-driving pressure and particle velocity at the seabed: Quantifying effects on crustaceans and groundfish
,” in
The Effects of Noise on Aquatic Life II. Advances in Experimental Medicine and Biology
, edited by
A. N.
Popper
and
A.
Hawkins
(
Springer
,
New York
,
2016
), Vol. 875, pp.
719
728
.
4.
H.
Bailey
,
B.
Senior
,
D.
Simmons
,
J.
Rusin
,
G.
Picken
, and
P. M.
Thompson
, “
Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals
,”
Marine Pollut. Bull.
60
,
888
897
(
2010
).
5.
R. A.
Kastelein
,
L.
Hoek
,
R.
Gransier
, and
N.
Jennings
, “
Hearing thresholds of two harbor seals (Phoca vitulina) for playbacks of multiple pile driving strike sounds
,”
J. Acoust. Soc. Am.
134
,
2307
2312
(
2013
).
6.
J.
Tougaard
,
J.
Carstensen
, and
J.
Teilmann
, “
Pile driving zone of responsiveness extends beyond 20 km for harbor porpoises (Phocoena phocoena (L.))
,”
J. Acoust. Soc. Am.
126
,
11
14
(
2009
).
7.
R. A.
Kastelein
,
L.
Hoek
,
R.
Gransier
, and
C. A. F.
deJong
, “
Hearing thresholds of a harbor porpoise (Phoceona phoceona) for playbacks of multiple pile driving strike sounds
,”
J. Acoust. Soc. Am.
134
,
2302
2306
(
2013
).
8.
R. A.
Kastelein
,
R.
Gransier
,
M. A.
Marijt
, and
L.
Hoek
, “
Hearing frequency thresholds of harbor porpoises (Phocoena phocoena) temporarily affected by played back offshore pile driving sounds
,”
J. Acoust. Soc. Am.
137
,
556
564
(
2015
).
9.
P. G.
Reinhall
and
P. H.
Dahl
, “
Underwater Mach wave radiation from impact pile driving: Theory and observation
,”
J. Acoust. Soc. Am.
130
,
1209
1216
(
2011
).
10.
F. B.
Jensen
,
F. A.
Kuperman
,
M. A.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
Springer
,
New York
,
2011
), pp.
233
529
.
11.
A.
Stokes
,
K.
Cockrell
,
J.
Wilson
,
D.
Davis
, and
D.
Warwick
, “
Mitigation of underwater pile driving noise during offshore construction: Final report
,”
Technical Report, Applied Physical Sciences
(
2010
), pp.
1
104
.
12.
T.
Lippert
and
S.
Lippert
, “
Modelling of pile driving noise by means of wavenumber integration
,”
Acoust. Australia
40
,
178
182
(
2012
).
13.
M.
Zampolli
,
M. J. J.
Nijhof
,
C. A. F.
deJong
,
M. A.
Ainslie
,
E. H. W.
Jansen
, and
B. A. J.
Quesson
, “
Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving
,”
J. Acoust. Soc. Am.
133
,
72
81
(
2013
).
14.
T.
Lippert.
and
O.
von Estorff
, “
The significance of parameter uncertainties for the prediction of offshore pile driving noise
,”
J. Acoust. Soc. Am.
136
,
2463
2471
(
2014
).
15.
M. B.
Fricke
and
R.
Rolfes
, “
Towards a complete physically based forecast model for underwater noise related to impact pile driving
,”
J. Acoust. Soc. Am.
137
,
1564
1575
(
2015
).
16.
S.
Schecklman
,
N.
Laws
,
L. M.
Zurk
, and
M.
Siderius
, “
A computational method to predict and study underwater noise due to pile driving
,”
J. Acoust. Soc. Am.
138
,
258
266
(
2015
).
17.
T.
Lippert
,
M.
Galindo-Romero
,
A. N.
Gavrilov
, and
O.
von Estorff
, “
Empirical estimation of peak pressure level from sound exposure level. Part II: Offshore impact pile driving noise
,”
J. Acoust. Soc. Am.
138
,
EL287
EL292
(
2015
).
18.
M.
Galindo-Romero
,
T.
Lippert
, and
A.
Gavrilov
, “
Empirical prediction of peak pressure levels in anthropogenic noise. Part I: Airgun arrays signals
,”
J. Acoust. Soc. Am.
138
,
EL540
EL544
(
2015
).
19.
K. M.
Göttsche
,
U.
Steinhagen
, and
P. M.
Juhl
, “
Numerical evaluation of pile vibration and noise emission during offshore pile driving
,”
Appl. Acoust.
99
,
51
59
(
2015
).
20.
D. R.
Wilkes
,
T. P.
Gourlay
, and
A. N.
Gavrilov
, “
Numerical modeling of radiated sound for impact pile driving in offshore environments
,”
IEEE J. Ocean. Eng.
41
,
1072
1078
(
2016
).
21.
S.
Lippert
,
M.
Nijhof
,
T.
Lippert
,
D.
Wilkes
,
A.
Gavrilov
,
K.
Heitmann
,
M.
Ruhnau
,
O.
von Estorff
,
A.
Schäfer
,
J.
Ehrlich
,
A.
MacGillivray
,
J.
Park
,
W.
Seong
,
M. A.
Ainslie
,
C.
de Jong
,
M.
Wood
,
L.
Wang
, and
P.
Theobald
, “
COMPILE—A generic benchmark case for predictions of marine pile-driving noise
,”
IEEE J. Ocean. Eng.
41
,
1061
1071
(
2016
).
22.
P. H.
Dahl
,
D. R.
Dall'Osto
, and
D. M.
Farrell
, “
The underwater sound field from vibratory pile driving
,”
J. Acoust. Soc. Am.
137
,
3544
3554
(
2015
).
23.
A.
Tsouvalas
and
A. V.
Metrikine
, “
Structure-borne wave radiation by impact and vibratory piling in offshore installations: From sound prediction to auditory damage
,”
J. Marine Sci. Eng.
3
,
44
(
2016
).
24.
A.
Tsouvalas
and
A. V.
Metrikine
, “
A semi-analytical model for the prediction of underwater noise from offshore pile driving
,”
J. Sound Vib.
332
,
3232
3257
(
2013
).
25.
A.
Tsouvalas
and
A. V.
Metrikine
, “
A three-dimensional vibroacoustic model for the prediction of underwater noise from offshore pile driving
,”
J. Sound Vib.
333
,
2283
2311
(
2014
).
26.
A.
Tsouvalas
and
A. V.
Metrikine
, “
Noise reduction by the application of an air-bubble curtain in offshore pile driving
,”
J. Sound Vib.
371
,
150
170
(
2016
).
27.
M. V.
Hall
, “
An analytical model for the underwater sound pressure waveform radiated when an offshore pile is driven
,”
J. Acoust. Soc. Am.
138
,
795
806
(
2015
).
28.
Q.
Deng
,
W.
Jiang
,
M.
Tan
, and
J. T.
Xing
, “
Modeling of offshore pile driving noise using a semi-analytical variational formulation
,”
Appl. Acoust.
104
,
85
100
(
2016
).
29.
A. O.
MacGillivray
, “
A model for underwater sound levels generated by marine impact pile driving
,”
Proc. Mtgs. Acoust.
20
,
045008
(
2015
).
30.
D.
Buehler
,
R.
Oestman
,
J.
Reyff
,
K.
Pommerenck
, and
B.
Mitchell
, “
Technical guidance for assessment and mitigation of the hydroacoustic effects of pile driving on fish
,”
Technical Report No. CTHWANP-RT-15-306.01.01
, Division of environmental analysis, California Department of Transportation, 1120 N Street, Sacramento, CA 95814 (
2015
), pp.
1
532
.
31.
E.
Westwood
,
C. T.
Tindle
, and
N. R.
Chapman
, “
A normal mode model for acoustic-elastic ocean environments
,”
J. Acoust. Soc. Am.
100
,
3631
3645
(
1996
).
32.
PACSYS: FEA/BEM solutions
,” available at http://www.pafec.info/pafec/ (Last viewed 16 January
2016
).
33.
A. J.
Deeks
and
M. F.
Randolph
, “
Analytical modelling of hammer impact for pile driving
,”
Int. J. Numer. Anal. Methods Geomech.
17
,
279
302
(
1993
).
34.
M. J. J.
Nijhof
,
B.
Binnerts
,
C. A. F.
deJong
, and
M. A.
Ainslie
, “
An efficient model for prediction of underwater noise due to pile driving at large ranges
,” in
Internoise 2014: Proceedings of 43rd International Congress on Noise Control Engineering
, edited by
J.
Davy
,
C.
Don
,
T.
McMinn
,
L.
Dowsett
,
N.
Broner
, and
M.
Burgess
(
2014
), pp.
1
10
.
35.
M.
Porter
, “
SCOOTER [computer program]
” available at http://oalib.hlsresearch.com/FFP/index.html (Last viewed 21 June 2017).
You do not currently have access to this content.