An existing technique for passive bottom-loss estimation from natural marine surface noise (generated by waves and wind) is adapted to use noise generated by ships. The original approach—based on beamforming of the noise field recorded by a vertical line array of hydrophones—is retained; however, additional processing is needed in order for the field generated by a passing ship to show features that are similar to those of the natural surface-noise field. A necessary requisite is that the ship position, relative to the array, varies over as wide a range of steering angles as possible, ideally passing directly over the array to ensure coverage of the steepest angles. The methodology is illustrated through simulation and applied to data from a field experiment conducted offshore of San Diego, CA in 2009.

1.
C.
Ferla
and
F. B.
Jensen
, “
Are current environmental databases adequate for sonar predictions in shallow water?
,” in
Impact of Littoral Environmental Variability on Acoustic Predictions and Sonar Performance
, edited by
N. G.
Pace
and
F. B.
Jensen
(
Springer Science+Business Media
,
Dordrecht, the Netherlands
,
2002
), pp.
555
562
.
2.
R. A.
Koch
and
D. P.
Knobles
, “
Geoacoustic inversion with ships as sources
,”
J. Acoust. Soc. Am.
117
,
626
637
(
2005
).
3.
S. E.
Crocker
,
P. L.
Nielsen
,
J. H.
Miller
, and
M.
Siderius
, “
Geoacoustic inversion of ship radiated noise in shallow water using data from a single hydrophone
,”
J. Acoust. Soc. Am.
136
,
EL362
EL368
(
2014
).
4.
D. J.
Battle
,
P.
Gerstoft
,
W. A.
Kuperman
,
W. S.
Hodgkiss
, and
M.
Siderius
, “
Geoacoustic inversion of tow-ship noise via near-field-matched-field processing
,”
IEEE J. Ocean. Eng.
28
,
454
467
(
2003
).
5.
C.
Park
,
W.
Seong
, and
P.
Gerstoft
, “
Geoacoustic inversion in time domain using ship of opportunity noise recorded on a horizontal towed array
,”
J. Acoust. Soc. Am.
117
,
1933
1941
(
2005
).
6.
D.
Tollefsen
and
S. E.
Dosso
, “
Bayesian geoacoustic inversion of ship noise on a horizontal array
,”
J. Acoust. Soc. Am.
124
,
788
795
(
2008
).
7.
N. R.
Chapman
,
R. M.
Dizaji
, and
R. L.
Kirlin
, “
Inversion of geoacoustic model parameters using ship radiated noise
,” in
Acoustic Sensing Techniques for the Shallow Water Environment
(
Springer
,
the Netherlands
,
2006
), pp.
289
302
.
8.
C.
Gervaise
,
B. G.
Kinda
,
J.
Bonnel
,
Y.
Stéphan
, and
S.
Vallez
, “
Passive geoacoustic inversion with a single hydrophone using broadband ship noise
,”
J. Acoust. Soc. Am.
131
,
1999
2010
(
2012
).
9.
C. H.
Harrison
and
D. G.
Simons
, “
Geoacoustic inversion of ambient noise: A simple method
,”
J. Acoust. Soc. Am.
112
,
1377
1389
(
2002
).
10.
M.
Siderius
and
C.
Harrison
, “
High-frequency geoacoustic inversion of ambient noise data using short arrays
,”
AIP Conf. Proc.
728
,
22
31
(
2004
).
11.
C. H.
Harrison
, “
Sub-bottom profiling using ocean ambient noise
,”
J. Acoust. Soc. Am.
115
,
1505
1515
(
2004
).
12.
J. E.
Quijano
,
S. E.
Dosso
,
J.
Dettmer
,
L. M.
Zurk
,
M.
Siderius
, and
C. H.
Harrison
, “
Bayesian geoacoustic inversion using wind-driven ambient noise
,”
J. Acoust. Soc. Am.
131
,
2658
2667
(
2012
).
13.
P. L.
Nielsen
,
M.
Siderius
, and
L.
Muzi
, “
Performance assessment of a short hydrophone array for seabed characterization using natural-made ambient noise
,”
J. Acoust. Soc. Am.
136
,
2155
(
2014
).
14.
J. I.
Arvelo
, “
Robustness and constraints of ambient noise inversion
,”
J. Acoust. Soc. Am.
123
,
679
686
(
2008
).
15.
L.
Muzi
,
M.
Siderius
,
J.
Quijano
, and
S.
Dosso
, “
High-resolution bottom-loss estimation using the ambient-noise vertical coherence function
,”
J. Acoust. Soc. Am.
137
,
481
491
(
2015
).
16.
S. W.
Lani
,
K. G.
Sabra
,
W. S.
Hodgkiss
,
W. A.
Kuperman
, and
P.
Roux
, “
Coherent processing of shipping noise for ocean monitoring
,”
J. Acoust. Soc. Am.
133
,
EL108
EL113
(
2013
).
17.
C. M.
Verlinden
,
J.
Sarkar
,
W. S.
Hodgkiss
,
W. A.
Kuperman
, and
K. G.
Sabra
, “
Passive acoustic source localization using sources of opportunity
,”
J. Acoust. Soc. Am.
138
,
EL54
EL59
(
2015
).
18.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
, “
Fundamentals of ocean acoustics
,” in
Computational Ocean Acoustics
, 2nd ed. (Modern Acoustics and Signal Processing) (
Springer
,
New York
,
2011
), Chap. 1, pp.
38
50
.
19.
C. H.
Harrison
, “
Formulas for ambient noise level and coherence
,”
J. Acoust. Soc. Am.
99
,
2055
2066
(
1996
).
20.
M. J.
Buckingham
, “
A theoretical model of ambient noise in a low-loss, shallow water channel
,”
J. Acoust. Soc. Am.
67
,
1186
1192
(
1980
).
21.
W. S.
Liggett
and
M. J.
Jacobson
, “
Noise covariance and vertical directivity in a deep ocean
,”
J. Acoust. Soc. Am.
39
,
280
288
(
1966
).
22.
D. R.
Barclay
and
M. J.
Buckingham
, “
Depth dependence of wind-driven, broadband ambient noise in the Philippine Sea
,”
J. Acoust. Soc. Am.
133
,
62
71
(
2013
).
23.
J. D.
Skinner
and
W. S.
Hodgkiss
, “
A networked/autonomous receiving array system
,” in
IEEE OCEANS
. Available at (
2008
) (Last viewed June 5, 2017).
24.
G. B.
Deane
,
M. J.
Buckingham
, and
C. T.
Tindle
, “
Vertical coherence of ambient noise in shallow water overlying a fluid seabed
,”
J. Acoust. Soc. Am.
102
,
3413
3424
(
1997
).
25.
H.
Schmidt
,
OASES Version 3.1 User Guide and Reference Manual
,
Massachusetts Institute of Technology
,
Cambridge, MA
(
2004
).
You do not currently have access to this content.