From acoustics to medical imaging and seismology, one strives to make inferences about the structure of complex media from acoustic wave observations. This study proposes a solution that is derived from the multidimensional Marchenko equation, to learn about the acoustic source distribution inside a volume, given a set of observations outside the volume. Traditionally, this problem has been solved by backpropagation of the recorded signals. However, to achieve accurate results through backpropagation, a detailed model of the medium should be known and observations should be collected along a boundary that completely encloses the volume of excitation. In practice, these requirements are often not fulfilled and artifacts can emerge, especially in the presence of strong contrasts in the medium. On the contrary, the proposed methodology can be applied with a single observation boundary only, without the need of a detailed model. In order to achieve this, additional multi-offset ultrasound reflection data must be acquired at the observation boundary. The methodology is illustrated with one-dimensional synthetics of a photoacoustic imaging experiment. A distribution of simultaneously acting sources is recovered in the presence of sharp density perturbations both below and above the embedded sources, which result in significant scattering that complicates the use of conventional methods.

1.
G. A.
McMechan
,
J. H.
Luetgert
, and
W. D.
Mooney
, “
Imaging of earthquake sources in Long Valley Caldera, California, 1983
,”
Bull. Seismol. Soc. Am.
75
(
4
),
1005
1020
(
1985
).
2.
C.
Larmat
,
J. P.
Montagner
,
M.
Fink
,
Y.
Capdeville
,
A.
Tourin
, and
E.
Clévédé
, “
Time-reversal imaging of seismic sources and application to the great Sumatra earthquake
,”
Geophys. Res. Lett.
33
(
19
),
L19312
, doi: (
2006
).
3.
F.
Song
and
M. N.
Toksöz
, “
Full-waveform based complete moment tensor inversion and source parameter estimation from downhole microseismic data for hydrofracture monitoring
,”
Geophysics
76
(
6
),
WC103
WC116
(
2011
).
4.
Z.
Li
and
M.
van der Baan
, “
Microseismic event localization by acoustic time reversal extrapolation
,”
Geophysics
81
(
3
),
KS123
KS134
(
2016
).
5.
L.
Eisner
,
S.
Williams-Stroud
,
A.
Hill
,
P.
Duncan
, and
M.
Thornton
, “
Beyond the dots in the box: Microseismicity-constrained fracture models for reservoir simulation
,”
Leading Edge
29
(
3
),
326
333
(
2010
).
6.
W. A.
Kuperman
,
W. S.
Hodgkiss
,
H. C.
Song
,
T.
Akal
,
C.
Ferla
, and
D. R.
Jackson
, “
Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror
,”
J. Acoust. Soc. Am.
103
(
1
),
25
40
(
1998
).
7.
E. H.
Saenger
,
G. K.
Kocur
,
R.
Jud
, and
M.
Torrilhon
, “
Application of time reverse modeling on ultrasonic non-destructive testing of concrete
,”
Appl. Math. Modell.
35
(
2
),
807
816
(
2011
).
8.
L. V.
Wang
and
S.
Hu
, “
Photoacoustic tomography: In vivo imaging from organelles to organs
,”
Science
335
(
6075
),
1458
1462
(
2012
).
9.
P.
Beard
, “
Biomedical photoacoustic imaging
,”
Interface Focus
1
(
4
),
602
631
(
2011
).
10.
S. A.
Ermilov
,
T.
Khamapirad
,
A.
Conjusteau
,
M. H.
Leonard
,
R.
Lacewell
,
K.
Mehta
,
T.
Miller
, and
A. A.
Oraevsky
, “
Laser optoacoustic imaging systems for detection of breast cancer
,”
J. Biomed. Opt.
14
(
2
),
024007
(
2009
).
11.
D. R.
Bauer
,
R.
Olafsson
,
L. G.
Montilla
, and
R. S.
Witte
, “
3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber
,”
J. Biomed. Opt.
16
(
2
),
026012
(
2011
).
12.
Y.
Xu
and
L. V.
Wang
, “
Time reversal and its application to tompography with diffracting sources
,”
Phys. Rev. Lett.
92
(
3
),
033902
(
2004
).
13.
D.
Gajewski
and
E.
Tessmer
, “
Reverse modelling for seismic event characterization
,”
Geophys. J. Int.
163
(
1
),
276
284
(
2005
).
14.
B.
Artman
,
I.
Podlatchikov
, and
B.
Witten
, “
Source location using time-reverse imaging
,”
Geophys. Prospect.
58
(
5
),
861
873
(
2010
).
15.
M.
Fink
, “
Time reversed acoustics
,”
Phys. Today
50
(
3
),
34
40
(
1997
).
16.
M.
Fink
and
C.
Prada
, “
Acoustic time-reversal mirrors
,”
Inverse Probl.
17
(
1
),
R1
R38
(
2001
).
17.
K.
Wapenaar
,
J.
Fokkema
, and
R.
Snieder
, “
Retrieving the Green's function in an open system by cross-correlation: A comparison of approaches
,”
J. Acoust. Soc. Am.
118
(
5
),
2783
2786
(
2005
).
18.
J. F.
Aubry
,
M.
Tanter
,
J.
Gerber
,
J. L.
Thomas
, and
M.
Fink
, “
Optimal focusing by spatio-temporal inverse filter: II. Experiments. Application to focusing through absorbing and reverberating media
,”
J. Acoust. Soc. Am.
110
(
1
),
48
58
(
2001
).
19.
G.
Paltauf
,
J. A.
Viator
,
S. A.
Prahl
, and
S. L.
Jacques
, “
Iterative reconstruction algorithm for optoacousting imaging
,”
J. Acoust. Soc. Am.
112
(
4
),
1536
1544
(
2002
).
20.
F.
Bargazani
and
R.
Snieder
, “
Optimal source imaging in elastic media
,”
Geophys. J. Int.
204
(
1
),
1134
1147
(
2016
).
21.
M. K. A.
Singh
and
W.
Steenbergen
, “
Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging
,”
Photoacoustics
3
(
4
),
123
131
(
2015
).
22.
M. K. A.
Singh
,
M.
Jaeger
,
M.
Frenz
, and
W.
Steenbergen
, “
In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUsion)
,”
Biomed. Opt. Exp.
7
(
8
),
2955
2972
(
2016
).
23.
K.
Wapenaar
,
J.
Thorbecke
,
J.
van der Neut
,
F.
Broggini
,
E.
Slob
, and
R.
Snieder
, “
Green's function retrieval from reflection data, in absence of a receiver at the virtual source position
,”
J. Acoust. Soc. Am.
135
(
5
),
2847
2861
(
2014
).
24.
E.
Slob
,
K.
Wapenaar
,
F.
Broggini
, and
R.
Snieder
, “
Seismic reflector imaging using internal multiples with Marchenko-type equations
,”
Geophysics
79
(
2
),
S63
S76
(
2014
).
25.
F.
Broggini
,
R.
Snieder
, and
K.
Wapenaar
, “
Data-driven wave field focusing and imaging with multidimensional deconvolution: Numerical examples for reflection data with internal multiples
,”
Geophysics
79
(
3
),
WA107
WA115
(
2014
).
26.
J.
van der Neut
,
I.
Vasconcelos
, and
K.
Wapenaar
, “
On Green's function retrieval by iterative substitution of the coupled Marchenko equations
,”
Geophys. J. Int.
203
(
1
),
792
813
(
2015
).
27.
R.
Burridge
, “
The Gelfand-Levitan, the Marchenko and the Gopinath-Sondhi integral equations of inverse scattering theory, regarded in the context of inverse impulse-response problems
,”
Wave Motion
2
(
4
),
305
323
(
1980
).
28.
J. H.
Rose
, “
Single-sided autofocusing of sound in layered media
,”
Inverse Probl.
18
(
6
),
1923
1934
(
2002
).
29.
S.
Singh
,
R.
Snieder
,
J.
van der Neut
,
J.
Thorbecke
,
E.
Slob
, and
K.
Wapenaar
, “
Accounting for free-surface multiples in Marchenko imaging
,”
Geophysics
82
(
1
),
R19
R30
(
2017
).
30.
J. T.
Fokkema
and
P. M.
van den Berg
,
Seismic Applications of Acoustic Reciprocity
(
Elsevier Science
,
New York
,
1993
).
31.
C. P. A.
Wapenaar
, “
Reciprocity theorems for two-way and one-way wave vectors: A comparison
,”
J. Acoust. Soc. Am.
100
(
6
),
3508
3518
(
1996
).
32.
N. N.
Bojarski
, “
Generalized reaction principles and reciprocity theorems for the wave equations, and the relationship between the time-advanced and time-retarded fields
,”
J. Acoust. Soc. Am.
74
(
1
),
281
285
(
1983
).
33.
J.
Laufer
,
D.
Delpy
,
C.
Elwell
, and
P.
Beard
, “
Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: Application to the measurement of blood oxygenation and haemoglobin concentration
,”
Phys. Med. Biol.
52
(
1
),
141
168
(
2007
).
34.
K.
Wapenaar
,
J.
van der Neut
, and
E.
Slob
, “
Unified double- and single-sided homogeneous Green's function representations
,”
Proc. R. Soc. A
472
(
2190
),
20160162
(
2016
).
35.
J.
van der Neut
,
K.
Wapenaar
, and
E.
Slob
, “
Marchenko imaging below complex overburdens in the Middle East
,” in
SEG/KOC Workshop, Seismic Multiples—Are They Signal or Noise?
(
2014
).
36.
J.
Brackenhoff
, “
Rescaling of incorrect source strength using Marchenko redatuming
,” M.Sc. thesis,
Delft University of Technology
, Delft, the Netherlands (
2016
).
37.
M.
Ravasi
,
I.
Vasconcelos
,
A.
Kritski
,
A.
Curtis
,
C. A.
da Costa Filho
, and
G. A.
Meles
, “
Target-oriented Marchenko imaging of a North Sea field
,”
Geophys. J. Int.
205
(
1
),
99
104
(
2016
).
38.
J.
van der Neut
and
K.
Wapenaar
, “
Adaptive overburden elimination with the multidimensional Marchenko equation
,”
Geophysics
81
(
5
),
T265
T284
(
2016
).
39.
D. J.
Verschuur
,
A. J.
Berkhout
, and
C. P. A.
Wapenaar
, “
Adaptive surface-related multiple elimination
,”
Geophysics
57
(
9
),
1166
1177
(
1992
).
40.
Y. M.
Batany
,
L. T.
Duarte
,
D.
Donno
,
J. M. T.
Romano
, and
H.
Chauris
, “
Adaptive multiple subtraction: Unification and comparison of matching filters based on the lq-norm and statistical dependence
,”
Geophysics
81
(
1
),
V43
V54
(
2016
).
41.
S.
Fomel
, “
Adaptive multiple subtraction using regularized nonstationary regression
,”
Geophysics
74
(
1
),
V25
V33
(
2009
).
42.
G.
Meles
,
K.
Löer
,
M.
Ravasi
,
A.
Curtis
, and
C. A.
da Costa Filho
, “
Internal multiple prediction and removal using Marchenko autofocusing and seismic interferometry
,”
Geophysics
80
(
1
),
A7
A11
(
2015
).
43.
K.
Wapenaar
,
J.
Thorbecke
,
J.
van der Neut
,
I.
Vasconcelos
, and
E.
Slob
, “
Marchenko imaging below an overburden with random scatterers
,” in
EAGE Extended Abstracts
, Th-E102-10 (
2014
).
You do not currently have access to this content.