The non-negative intensity (NNI) method is applied to large-scale coupled fluid–structure interaction (FSI) problems using the fast multipole boundary element method (FMBEM). The NNI provides a field on the radiating structure surface that consists of positive-only contributions to the radiated sound power, thus avoiding the near-field cancellation effects that otherwise occur with the sound intensity field. Thus far the NNI has been implemented with the boundary element method (BEM) for relatively small problem sizes to allow for the full BEM coefficient and inverse matrices to be explicitly constructed and stored. In this work, the FMBEM is adapted to the NNI by calculating the eigenvalue solution of the symmetric acoustic impedance matrix using the FMBEM via a two-stage solution method. The FMBEM implementation of the NNI is demonstrated for a large-scale model of a submerged cylindrical shell. The coupled FSI problem is first solved using a finite element–FMBEM model and the resulting surface fields are then used in the FMBEM calculation of the NNI. An equivalent reactive NNI field representing the evanescent near-field radiation is demonstrated and the effect of the chosen number eigenvectors on the NNI field is investigated.

1.
S.
Marburg
,
E.
Lösche
,
H.
Peters
, and
N.
Kessissoglou
, “
Surface contributions to radiated sound power
,”
J. Acoust. Soc. Am.
133
,
3700
3705
(
2013
).
2.
K. A.
Cunefare
and
M. N.
Currey
, “
On the exterior acoustic radiation modes of structures
,”
J. Acoust. Soc. Am.
96
,
2302
2312
(
1994
).
3.
S.-I.
Ishiyama
,
M.
Imai
,
S.-I.
Maruyama
,
H.
Ido
,
N.
Sugiura
, and
S.
Suzuki
, “
The applications of ACOUST/BOOM—A noise level prepredicting and reducing computer code
,” SAE-paper 880910, pp.
195
205
(
1988
).
4.
S.
Marburg
, “
Efficient optimization of a noise transfer function by modification of a shell structure geometry—Part I: Theory
,”
Struct. Multidiscip. Optim.
24
,
51
59
(
2002
).
5.
S.
Marburg
and
S.
Hardtke
, “
Investigation and optimization of a spare wheel well to reduce vehicle interior noise
,”
J. Comput. Acoust.
11
,
425
449
(
2003
).
6.
J. D.
Maynard
,
E. G.
Williams
, and
Y.
Lee
, “
Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH
,”
J. Acoust. Soc. Am.
78
,
1395
1413
(
1985
).
7.
E. G.
Williams
, “
Supersonic acoustic intensity
,”
J. Acoust. Soc. Am.
97
,
121
127
(
1995
).
8.
E. G.
Williams
, “
Supersonic acoustic intensity on planar sources
,”
J. Acoust. Soc. Am.
104
,
2845
2850
(
1998
).
9.
N. P.
Valdivia
,
E. G.
Williams
, and
P. C.
Herdic
, “
Equivalent sources method for supersonic intensity of arbitrarily shaped geometries
,”
J. Sound Vib.
347
,
46
62
(
2015
).
10.
C. A.
Correa
, Jr.
and
R. A.
Tenenbaum
, “
Useful intensity: A technique to identify radiating regions on arbitrarily shaped surfaces
,”
J. Sound Vib.
332
,
1567
1584
(
2013
).
11.
E. G.
Williams
, “
Convolution formulations for non-negative intensity
,”
J. Acoust. Soc. Am.
134
,
1055
1066
(
2013
).
12.
D.
Liu
,
H.
Peters
,
S.
Marburg
, and
N.
Kessissoglou
, “
Supersonic intensity and non-negative intensity for preprediction of radiated sound
,”
J. Acoust. Soc. Am.
139
,
2797
2806
(
2016
).
13.
E.
Fernandez-Grande
and
F.
Jacobsen
, “
Conservation of power of the supersonic acoustic intensity (L)
,”
J. Acoust. Soc. Am.
136
,
461
465
(
2014
).
14.
D.
Liu
,
H.
Peters
,
S.
Marburg
, and
N.
Kessissoglou
, “
Surface contributions to scattered sound power using non-negative intensity
,”
J. Acoust. Soc. Am.
140
,
1206
1217
(
2016
).
15.
R.
Coifman
,
V.
Rokhlin
, and
S.
Wandzura
, “
The fast multipole method for the wave equation: A pedestrian prescription
,”
IEEE Trans. Antennas Propag.
35
,
7
12
(
1993
).
16.
Y. J.
Liu
,
S.
Mukherjee
,
N.
Nishimura
,
M.
Schanz
,
W.
Ye
,
A.
Sutradhar
,
E.
Pan
,
N. A.
Dumont
,
A.
Frangi
, and
A.
Saez
, “
Recent advances and emerging applications of the boundary element method
,”
Appl. Mech. Rev.
64
,
030802
(
2012
).
17.
N. A.
Gumerov
and
R.
Duraiswami
,
Fast Multipole Methods for the Helmholtz Equation in Three Dimensions
(
Elsevier
,
Oxford
,
2004
), pp.
1
520
.
18.
H.
Wu
,
W.
Jiang
, and
Y.
Liu
, “
Analyzing acoustic radiation modes of baffled plates with a fast multipole boundary element method
,”
J. Vib. Acoust.
135
,
011007
(
2013
).
19.
H.
Wu
,
W.
Jiang
,
Y.
Zhang
, and
W.
Lu
, “
A method to compute the radiated sound power based on mapped acoustic radiation modes
,”
J. Acoust. Soc. Am.
135
,
679
692
(
2014
).
20.
D.
Brunner
,
M.
Junge
, and
L.
Gaul
, “
A comparison of FE-BE coupling schemes for large-scale problems with fluid-structure interaction
,”
Int. J. Numer. Methods Eng.
77
,
664
688
(
2009
).
21.
H.
Peters
,
N.
Kessissoglou
, and
S.
Marburg
, “
Modal decomposition of exterior acoustic-structure interaction
,”
J. Acoust. Soc. Am.
133
,
2668
2677
(
2013
).
22.
H.
Peters
,
S.
Marburg
, and
N.
Kessissoglou
, “
Structural-acoustic coupling on non-conforming meshes with quadratic shape functions
,”
Int. J. Numer. Methods Eng.
91
,
27
38
(
2012
).
23.
S.
Marburg
and
B.
Nolte
, “
A unified approach to finite and boundary element discretization in linear time-harmonic acoustics
,” in
Computational Acoustics of Noise Propagation in Fluids
, edited by
S.
Marburg
and
B.
Nolte
(
Springer
,
Berlin
,
2008
), pp.
1
34
.
24.
H.
Peters
,
N.
Kessissoglou
, and
S.
Marburg
, “
Modal decomposition of exterior acoustic-structure interaction problems with model order reduction
,”
J. Acoust. Soc. Am.
135
,
2706
2717
(
2014
).
25.
Y.
Saad
,
Iterative Methods for Sparse Linear Systems
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
2003
), pp.
1
547
.
26.
S.
Marburg
and
S.
Schneider
, “
Performance of iterative solvers for acoustic problems. Part I. Solvers and effect of diagonal preconditioning
,”
Eng. Anal. Bound. Elem.
27
,
727
750
(
2003
).
27.
M.
Ochmann
,
A.
Homm
,
S.
Makarov
, and
S.
Semenov
, “An iterative GMRES–based boundary element solver for acoustic scattering
,”
Eng. Anal. Bound. Elem.
27
,
717
725
(
2003
).
28.
N. A.
Gumerov
and
R.
Duraiswami
, “
A broadband fast multipole accelerated boundary element method for the 3D Helmholtz equation
,”
J. Acoust. Soc. Am.
125
,
191
205
(
2009
).
29.
K.
Chen
and
P. J.
Harris
, “Efficient preconditioners for iterative solution of the boundary element equations for the three-dimensional Helmholtz equation
,”
Appl. Numer. Math.
36
,
475
489
(
2001
).
30.
R.
Lehoucq
,
D.
Sorensen
, and
C.
Yang
,
ARPACK Users' Guide: Solution of Large Scale Eigenvalue problems with Implicitly Restarted Arnoldi Methods
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
1998
), pp.
1
142
.
31.
A. J.
Burton
and
G. F.
Miller
, “
The application of integral equation methods to the numerical solution of some exterior boundary-value problems
,”
Proc. R. Soc. London, Ser. A
323
,
201
210
(
1971
).
32.
S.
Marburg
, “
The Burton and Miller method: Unlocking another mystery of its coupling parameter
,”
J. Comput. Acoust.
24
,
1550016
(
2016
).
33.
H. T.
Rathod
,
K. V.
Nagaraja
,
B.
Venkatesuda
, and
N. L.
Ramesh
, “
Gauss Legendre quadrature over a triangle
,”
J. Indian Inst. Sci.
84
,
183
188
(
2004
).
34.
L.
Scuderi
, “
On the computation of nearly singular integrals in 3D BEM collocation
,”
Int. J. Numer. Methods Eng.
74
,
1733
1770
(
2008
).
35.
T.
Matsumoto
,
C.
Zheng
,
S.
Harada
, and
T.
Takahashi
, “
Explicit evaluation of hypersingular boundary integral equation for 3-D Helmholtz equation discretized with constant triangular element
,”
J. Comput. Sci. Technol.
4
,
194
206
(
2010
).
36.
H.
Cheng
,
W. Y.
Crutchfield
,
Z.
Gimbutas
,
L. F.
Greengard
,
J. F.
Ethridge
,
J.
Huang
,
V.
Rokhlin
,
N.
Yarvin
, and
J.
Zhao
, “
A wideband fast multipole method for the Helmholtz equation in three dimensions
,”
J. Comput. Phys.
216
,
300
325
(
2006
).
37.
N. A.
Gumerov
and
R.
Duraiswami
, “
Recursive computation of spherical harmonic rotation coefficients of large degree
,” in
Excursions in Harmonic Analysis
, edited by
R.
Balan
,
M.
Begué
,
J. J.
Benedetto
,
W.
Czaja
, and
K. A.
Okoudjou
(
Springer International Publishing Switzerland
,
Basel, Switzerland
,
2015
), Vol. 3, pp.
105
141
.
38.
N. A.
Gumerov
and
R.
Duraiswami
, “
Recursions for the computation of multipole translation and rotation coefficients for the 3-D Helmholtz equation
,”
SIAM J. Sci. Comput.
25
,
1344
1381
(
2003
).
39.
M.
Böhme
and
D.
Potts
, “
A fast algorithm for filtering and wavelet decomposition on the sphere
,”
Electron. Trans. Numer. Anal.
16
,
70
93
(
2003
).
40.
N. A.
Gumerov
and
R.
Duraiswami
, “
Fast multipole methods on graphics processors
,”
J. Comput. Phys.
227
,
8290
8313
(
2008
).
41.
D. R.
Wilkes
and
A. J.
Duncan
, “
Acoustic coupled fluid-structure interactions using a unified fast multipole boundary element method
,”
J. Acoust. Soc. Am.
137
,
2158
2167
(
2015
).
42.
H.
Peters
,
N.
Kessissoglou
, and
S.
Marburg
, “
Enforcing reciprocity in numerical analysis of acoustic radiation modes and sound power evaluation
,”
J. Comput. Acoust.
20
,
1250005
(
2012
).
43.
M. C.
Junger
and
D.
Feit
,
Sound, Structures, and Their Interaction
(
Acoustical Society of America
,
New York
,
1993
), pp.
1
285
.
44.
V.
Cotoni
,
P.
Shorter
, and
R.
Langley
, “
Numerical and experimental validation of a hybrid finite element-statistical energy analysis method
,”
J. Acoust. Soc. Am.
122
,
259
270
(
2007
).
45.
VA One
, “
Vibroacoustics Simulation Software
,” available at https://www.esi-group.com/software-solutions/virtual-performance/va-one-vibroacoustics-simulation-software (Last viewed 10/2/
2017
).
46.
P. T.
Chen
and
J. H.
Ginsberg
, “
Complex power, reciprocity, and radiation modes for submerged bodies
,”
J. Acoust. Soc. Am.
98
,
3343
3351
(
1995
).
47.
S.
Ambikasaran
and
E.
Darve
, “
The inverse fast multipole method
,” arXiv:1407.1572 (
2014
).
48.
P.
Coulier
,
H.
Pouransari
, and
E.
Darve
, “
The inverse fast multipole method: Using a fast approximate direct solver as a preconditioner for dense linear systems
,” arXiv:1508.01835 (
2015
).
You do not currently have access to this content.