There is currently interest in transmitting acoustic signals along granular chains to produce waveforms of relevance to biomedical ultrasound applications. The study of such a transduction mechanism is greatly aided by the use of validated theoretical models. In view of this, a finite element analysis is presented in this paper. The dynamics of a granular chain of six, 1 mm diameter chrome steel spherical beads, was excited at one end using a sinusoidal displacement signal at 73 kHz, and terminated by a rigid support. Output from this model was compared with the solution provided by the equivalent discrete dynamics model, and good agreement obtained. An experimental configuration involving the same chain, but terminated by an annular support made of a liquid photopolymer resin was also simulated and the velocity of the last sphere obtained through simulation was compared with laser vibrometer measurement, with good agreement. This model was then extended whereby the granular chain was coupled to an acoustic medium with the properties of water, via a thin vitreous carbon cylinder. Finite element predictions of the acoustic pressure indicate that, for a 73 kHz excitation frequency, harmonic rich acoustic pulses with harmonic content close to 1 MHz are predicted.

1.
G.
Theocharis
,
N.
Boechler
, and
C.
Daraio
, in
Acoustic Metamaterials and Phononic Crystals
, edited by
P. A.
Deymier
(
Springer
,
Berlin
,
2013
), Vol.
173
, Chap. 7.
2.
V. F.
Nesterenko
,
Dynamics of Heterogeneous Materials
(
Springer
,
New York
2001
).
3.
V. F.
Nesterenko
, “
Propagation of nonlinear compression pulses in granular media
,”
J. Appl. Mech. Tech. Phys.
24
,
733
743
(
1983
).
4.
A. N.
Lazaridi
and
V. F.
Nesterenko
, “
Observation of a new type of solitary waves in a one dimensional granular medium
,”
J. Appl. Mech. Tech. Phys.
26
(
3
),
405
408
(
1985
).
5.
C.
Coste
,
E.
Falcon
, and
S.
Fauve
, “
Solitary waves in a chain of beads under Hertz contact
,”
Phys. Rev. E
56
,
6104
6117
(
1997
).
6.
S.
Sen
,
J.
Hong
,
E.
Avalos
, and
R.
Doney
, “
Solitary waves in a granular chain
,”
Phys. Rep.
462
,
21
66
(
2008
).
7.
S.
Nettel
,
Wave Physics, Oscillations–Solitons–Chaos
, 4th ed. (
Springer
,
Berlin
,
2009
), p.
231
.
8.
L.
Cai
,
J.
Yang
,
P.
Rizzo
,
X.
Ni
, and
C.
Daraio
, “
Propagation of highly nonlinear solitary waves in a curved granular chain
,”
Granular Matter
15
,
357
366
(
2013
).
9.
A.
Spadoni
and
C.
Daraio
, “
Generation and control of sound bullets with a nonlinear acoustic lens
,”
Proc. Natl. Acad. Sci.
107
,
7230
7234
(
2010
).
10.
J.
Yang
,
C.
Silvestro
,
S. N.
Sangiorgio
,
S. L.
Borkowski
,
E.
Ebramzadeh
,
L.
De Nardo
, and
C.
Daraio
, “
Nondestructive evaluation of orthopaedic implant stability in THA using highly nonlinear solitary waves
,”
Smart Mater. Struct.
21
,
012002
(
2012
).
11.
D. A.
Hutchins
,
J.
Yang
,
O.
Akanji
,
P. J.
Thomas
,
L. A. J.
Davis
,
S.
Freear
,
S.
Harput
,
N.
Saffari
, and
P.
Gélat
, “
Evolution of ultrasonic impulses in chains of spheres using resonant excitation
,”
Eur. Phys. Lett.
109
(
5
),
54002-p1
54002-p5
(
2015
).
12.
D. A.
Hutchins
,
J.
Yang
,
O.
Akanji
,
P. J.
Thomas
,
L. A. J.
Davis
,
S.
Freear
,
S.
Harput
,
N.
Saffari
, and
P.
Gélat
, “
Ultrasonics propagation in finite-length granular chains
,”
Ultrasonics
69
,
215
223
(
2016
).
13.
O.
Akanji
,
J.
Yang
,
D.
Hutchins
,
P. J.
Thomas
,
L. A. J.
Davis
,
Sevan
Harput
,
Steven
Freear
,
P.
Gélat
, and
N.
Saffari
, “
The effect of boundary conditions on resonant ultrasonic spherical chains
,”
IEEE Trans. Ultrason. Ferroelect. Freq. Control
63
,
1957
1966
(
2016
).
14.
J.
Lydon
,
K. R.
Jayaprakash
,
D.
Ngo
,
Y.
Starosvetsky
,
A. F.
Vakakis
, and
C.
Daraio
, “
Frequency bands of strongly nonlinear homogeneous granular systems
,”
Phys. Rev. E
88
,
012206
(
2013
).
15.
D.
Khatri
,
C.
Daraio
, and
P.
Rizzo
, “
Coupling of highly nonlinear waves with linear elastic media
,”
Proc. SPIE
7292
,
72920P
(
2009
).
16.
R. W.
Musson
and
W.
Carlson
, “
Simulation of solitary waves in a monodisperse granular chain using COMSOL multiphysics: Localized plastic deformation as a dissipation mechanism
,”
Granul. Matter
16
,
543
550
(
2014
).
17.
X.
Ni
,
P.
Rizzo
,
J.
Yang
,
D.
Katri
, and
C.
Daraio
, “
Monitoring the hydration of cement using highly nonlinear solitary waves
,”
NDT&E Int.
52
,
76
85
(
2012
).
18.
P.
Gélat
,
J.
Yang
,
P. J.
Thomas
,
D. A.
Hutchins
,
L. A. J.
Davis
,
S.
Freear
,
S.
Harput
, and
N.
Saffari
, “
The dynamic excitation of a granular chain for biomedical ultrasound applications: Contact mechanics finite element analysis and validation
,”
J. Phys. Conf. Ser.
684
(
1
),
012005
(
2016
).
19.
ANSYS Mechanical User's Guide, Version 16.1, ANSYS Inc. (
2015
).
20.
H. R.
Hertz
, “
On the contact of elastic solids
,”
J. Reine Angew. Math.
92
,
156
171
(
1881
).
21.
V. A.
Yastrebov
,
Numerical Methods in Contact Mechanics
(
ISTE
,
London
,
2014
), p.
103
.
23.
G.
Kuwabara
and
K.
Kono
, “
Restitution coefficient in collision between two spheres
,”
Jpn. J. Appl. Phys.
26
,
1230
1233
(
1987
).
24.
H.
Kruggel-Emden
,
E.
Simsek
,
S.
Rickelt
,
S.
Wirtz
, and
V.
Scherer
, “
Review and extension of normal force models for the Discrete Element Method
,”
Power Technol.
171
,
157
173
(
2007
).
25.
W.
Lin
and
C.
Daraio
, “
Wave propagation in one-dimensional microscopic granular chains
,”
Phys. Rev. E
94
,
052907
(
2016
).
26.
E.
Cosserat
and
F.
Cosserat
,
Théorie des Corps Déformables
(
Hermann et Fils
,
Paris
,
1909
).
27.
A.
Merkel
,
V.
Tournat
, and
V.
Gusev
, “
Experimental evidence of rotational elastic waves in granular phononic crystals
,”
Phys. Rev. Lett.
107
,
225502
(
2011
).
28.
F.
Allein
,
V.
Tournat
,
V.
Gusev
, and
G.
Theocharis
, “
Tunable magneto-granular phononic crystals
,”
Appl. Phys. Lett.
108
,
161903
(
2016
).
29.
J.
Cabaret
,
P.
Bequin
,
G.
Theocharis
,
V.
Andreev
,
V. E.
Gusev
, and
V.
Tournat
, “
Nonlinear hysteretic torsional waves
,”
Phys. Rev. Lett.
115
,
054301
(
2015
).
You do not currently have access to this content.