This paper presents a technique for solving the multichannel blind deconvolution problem. The authors observe the convolution of a single (unknown) source with K different (unknown) channel responses; from these channel outputs, the authors want to estimate both the source and the channel responses. The authors show how this classical signal processing problem can be viewed as solving a system of bilinear equations, and in turn can be recast as recovering a rank-1 matrix from a set of linear observations. Results of prior studies in the area of low-rank matrix recovery have identified effective convex relaxations for problems of this type and efficient, scalable heuristic solvers that enable these techniques to work with thousands of unknown variables. The authors show how a priori information about the channels can be used to build a linear model for the channels, which in turn makes solving these systems of equations well-posed. This study demonstrates the robustness of this methodology to measurement noises and parametrization errors of the channel impulse responses with several stylized and shallow water acoustic channel simulations. The performance of this methodology is also verified experimentally using shipping noise recorded on short bottom-mounted vertical line arrays.

1.
W.
Munk
,
P.
Worcester
, and
C.
Wunsch
,
Ocean Acoustic Tomography
(
Cambridge University Press
,
New York
,
2009
), pp.
2
30
.
2.
D. R.
Dowling
and
K. G.
Sabra
, “
Acoustic remote sensing
,”
Ann. Rev. Fluid Mech.
47
,
221
243
(
2015
).
3.
G.
Xu
,
H.
Liu
,
L.
Tong
, and
T.
Kailath
, “
A least-squares approach to blind channel identification
,”
IEEE Trans. Signal Process.
43
(
12
),
2982
2993
(
1995
).
4.
G. B.
Giannakis
and
E.
Serpedin
, “
Linear multichannel blind equalizers of nonlinear fir volterra channels
,”
IEEE Trans. Signal Process.
45
(
1
),
67
81
(
1997
).
5.
G.
Harikumar
and
Y.
Bresler
, “
Perfect blind restoration of images blurred by multiple filters: Theory and efficient algorithms
,”
IEEE Trans. Image Process.
8
(
2
),
202
219
(
1999
).
6.
W.
Souidene
,
K.
Abed-Meraim
, and
A.
Beghdadi
, “
A new look to multichannel blind image deconvolution
,”
IEEE Trans. Image Process.
18
(
7
),
1487
1500
(
2009
).
7.
J. M.
Mendel
,
Optimal Seismic Deconvolution: An Estimation-based Approach
(
Academic Press
,
New York
,
1983
), pp.
1
26
.
8.
K.
Sabra
and
D.
Dowling
, “
Blind deconvolution in oceanic waveguides using artificial time reversal
,”
J. Acoust. Soc. Am.
116
,
262
271
(
2004
).
9.
K. G.
Sabra
,
H.-C.
Song
, and
D. R.
Dowling
, “
Ray-based blind deconvolution in ocean sound channels
,”
J. Acoust. Soc. Am.
127
(
2
),
EL42
EL47
(
2010
).
10.
S. H.
Abadi
,
D.
Rouseff
, and
D. R.
Dowling
, “
Blind deconvolution for robust signal estimation and approximate source localization
,”
J. Acoust. Soc. Am.
131
(
4
),
2599
2610
(
2012
).
11.
S. H.
Abadi
,
H. C.
Song
, and
D. R.
Dowling
, “
Broadband sparse-array blind deconvolution using frequency-difference beamforming
,”
J. Acoust. Soc. Am.
132
(
5
),
3018
3029
(
2012
).
12.
S. R.
Chapin
,
G. E.
Ioup
,
J. W.
Ioup
, and
G. B.
Smith
, “
Statistical analysis of acoustic Green's functions in a shallow ocean environment
,”
J. Acoust. Soc. Am.
109
(
5
),
2295
2295
(
2001
).
13.
G. B.
Smith
, “
Blind deconvolution for multipath mitigation in shallow water acoustics
,”
J. Acoust. Soc. Am.
107
(
5
),
2868
2868
(
2000
).
14.
M. K.
Broadhead
and
L. A.
Pflug
, “
Performance of some sparseness criterion blind deconvolution methods in the presence of noise
,”
J. Acoust. Soc. Am.
107
(
2
),
885
893
(
2000
).
15.
M. J.
Roan
,
M. R.
Gramann
,
J. G.
Erling
, and
L. H.
Sibul
, “
Blind deconvolution applied to acoustical systems identification with supporting experimental results
,”
J. Acoust. Soc. Am.
114
(
4
),
1988
1996
(
2003
).
16.
B. S.
Cazzolato
,
P.
Nelson
,
P.
Joseph
, and
R. J.
Brind
, “
Numerical simulation of optimal deconvolution in a shallow-water environment
,”
J. Acoust. Soc. Am.
110
(
1
),
170
185
(
2001
).
17.
L.
Tong
and
S.
Perreau
, “
Multichannel blind identification: From subspace to maximum likelihood methods
,”
IEEE Proc.
86
,
1951
1968
(
1998
).
18.
E.
Moulines
,
P.
Duhamel
,
J.-F.
Cardoso
, and
S.
Mayrargue
, “
Subspace methods for the blind identification of multichannel fir filters
,”
IEEE Trans. Signal Process.
43
(
2
),
516
525
(
1995
).
19.
G. B.
Giannakis
and
J. M.
Mendel
, “
Identification of nonminimum phase systems using higher order statistics
,”
IEEE Trans. Acoust., Speech Signal Process.
37
(
3
),
360
377
(
1989
).
20.
M. K.
Broadhead
,
L. A.
Pflug
, and
R. L.
Field
, “
Use of higher order statistics in source signature estimation
,”
J. Acoust. Soc. Am.
107
(
5
),
2576
2585
(
2000
).
21.
A.
Ahmed
,
B.
Recht
, and
J.
Romberg
, “
Blind deconvolution using convex programming
,”
IEEE Trans. Inf. Theory.
60
(
3
),
1711
1732
(
2014
).
22.
B.
Recht
,
M.
Fazel
, and
P. A.
Parrilo
, “
Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
,”
SIAM Review
52
(
3
),
471
501
(
2010
).
23.
S.
Burer
and
R.
Monteiro
, “
A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization
,”
Math. Program., Ser. B
95
,
329
357
(
2003
).
24.
M.
Davenport
and
J.
Romberg
, “
An overview of low-rank matrix recovery from incomplete observations
,”
IEEE J. Sel. Topics Signal Process.
10
(
4
),
608
622
(
2016
).
25.
E. J.
Candès
and
B.
Recht
, “
Exact matrix completion via convex optimization
,”
Found. Comput. Math.
9
(
6
),
717
772
(
2009
).
26.
E. J.
Candès
and
T.
Tao
, “
The power of convex relaxation: Near-optimal matrix completion
,”
IEEE Trans. Inf. Theory
56
(
5
),
2053
2080
(
2010
).
27.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
Springer Science & Business Media
,
New York
,
2011
), pp.
103
107
.
28.
M. A.
Davenport
and
M. B.
Wakin
, “
Compressive sensing of analog signals using discrete prolate spheroidal sequences
,”
Appl. Comput. Harmonic Anal.
33
(
3
),
438
472
(
2012
).
29.
J.
Romberg
,
N.
Tian
, and
K.
Sabra
, “
Multichannel blind deconvolution using low rank recovery
,” in
SPIE Defense, Security, and Sensing, International Society for Optics and Photonics
(International Society for Optics and Photonics,
2013
), pp.
87500E
87500E
.
30.
G. M.
Wenz
, “
Acoustic ambient noise in the ocean: Spectra and sources
,”
J. Acoust. Soc. Am.
34(12)
,
1936
1956
(
1962
).
31.
M. B.
Porter
, The KRAKEN normal mode program, No. NRL/MR/5120-92-6920 (Naval Research Lab., Washington, DC,
1992
), pp.
1
198
.
32.
M. B.
Porter
, “
The bellhop manual and user's guide: Preliminary draft
,” Technical Report, Heat, Light, and Sound Research, Inc., La Jolla, CA, pp.
1
57
(
2011
).
33.
J.
Skinner
and
W.
Hodgkiss
, “
A networked/autonomous receiving array system
,” in
IEEE OCEANS
(
2008
), pp.
1
6
.
34.
C.
Leroy
,
S.
Lani
,
K. G.
Sabra
,
W. S.
Hodgkiss
,
W.
Kuperman
, and
P.
Roux
, “
Enhancing the emergence rate of coherent wavefronts from ocean ambient noise correlations using spatio-temporal filters
,”
J. Acoust. Soc. Am.
132
(
2
),
883
893
(
2012
).
35.
S. W.
Lani
,
K. G.
Sabra
,
W. S.
Hodgkiss
,
W.
Kuperman
, and
P.
Roux
, “
Coherent processing of shipping noise for ocean monitoring
,”
J. Acoust. Soc. Am.
133
(
2
),
EL108
EL113
(
2013
).
36.
S.
Burer
and
R. D.
Monteiro
, “
Local minima and convergence in low-rank semidefinite programming
,”
Math. Program.
103
(
3
),
427
444
(
2005
).
You do not currently have access to this content.