The array invariant proposed for robust source localization in shallow water is based on the dispersion characteristics in ideal waveguides. It involves conventional plane-wave beamforming using a vertical array, exploiting multiple arrivals separated in beam angle and travel time, i.e., beam-time migration. The approach typically requires either a short pulse emitted by a source or the Green's function that can be estimated from a probe signal to resolve distinct multipath arrivals. In this letter, the array invariant method is extended to unknown source waveforms by extracting the Green's function via blind deconvolution. The cascade of blind deconvolution and array invariant for robust source-range estimation is demonstrated using a 16-element, 56-m long vertical array at various ranges (1.5–3.5 km) from a towed source broadcasting broadband communication waveforms (0.5–2 kHz) in approximately 100-m deep shallow water.

1.
H. C.
Song
and
C.
Cho
, “
Array invariant-based source localization in shallow water using a sparse vertical array
,”
J. Acoust. Soc. Am.
141
,
183
188
(
2017
).
2.
S.
Lee
and
N. C.
Makris
, “
The array invariant
,”
J. Acoust. Soc. Am.
119
,
336
351
(
2006
).
3.
H. C.
Song
and
C.
Cho
, “
The relation between the waveguide invariant and array invariant
,”
J. Acoust. Soc. Am.
138
,
899
903
(
2015
).
4.
C.
Cho
,
H. C.
Song
, and
W. S.
Hodgkiss
, “
Robust source-range estimation using the array/waveguide invariant and a vertical array
,”
J. Acoust. Soc. Am.
139
,
63
69
(
2016
).
5.
K.
Sabra
,
H.
Song
, and
D.
Dowling
, “
Ray-based blind deconvolution in ocean sound channels
,”
J. Acoust. Soc. Am.
127
,
EL42
EL47
(
2010
).
6.
S.
Byun
,
C.
Verlinden
, and
K.
Sabra
, “
Blind deconvolution of shipping sources in an acoustic waveguide
,”
J. Acoust. Soc. Am.
141
,
797
807
(
2017
).
7.
M.
Dzieciuch
,
P.
Worcester
, and
W.
Munk
, “
Turning point filters: Analysis of sound propagation on a gyre-scale
,”
J. Acoust. Soc. Am.
110
,
135
149
(
2001
).
8.
K.
Sabra
and
D. R.
Dowling
, “
Blind deconvolution in ocean waveguides using artificial time reversal
,”
J. Acoust. Soc. Am.
116
,
262
271
(
2004
).
9.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
Springer
,
New York
,
2011
), Chaps. 3 and 5.
10.
G.
Grelowska
, “
Prevailing patterns of the sound speed distributions in the environment of the southern Baltic
,”
Arch. Acoust.
25
,
359
368
(
2000
).
11.
H. C.
Song
, “
An overview of underwater time-reversal communication
,”
IEEE J. Ocean. Eng.
41
,
644
655
(
2016
).
12.
C.
Cho
and
H. C.
Song
, “
Impact of array tilt on source-range estimation in shallow water using the array invariant
,”
J. Acoust. Soc. Am.
141
,
2849
2856
(
2017
).
You do not currently have access to this content.