Horseshoe bats (Rhinolophidae) and the related Old World leaf-nosed bats (Hipposideridae) both show conspicuous pinna motions as part of their biosonar behaviors. In the current work, the kinematics of these motions in one species from each family (Rhinolophus ferrumequinum and Hipposideros armiger) has been analyzed quantitatively using three-dimensional tracking of landmarks placed on the pinna. The pinna motions that were observed in both species fell into two categories: In “rigid rotations” motions the geometry of the pinna was preserved and only its orientation in space was altered. In “open–close motions” the geometry of the pinna was changed which was evident in a change of the distances between the landmark points. A linear discriminant analysis showed that motions from both categories could be separated without any overlap in the analyzed data set. Hence, bats from both species have two separate types of pinna motions with apparently no transitions between them. The deformations associated with open–close pinna motions in Hipposideros armiger were found to be substantially larger compared to the wavelength associated with the largest pulse energy than in Rhinolophus ferrumequinum (137% vs 99%). The role of the two different motions in the biosonar behaviors of the animals remains to be determined.

1.
N. B.
Simmons
, “
Order chiroptera
,” in
Mammal Species of the World: A Taxonomic and Geographic Reference
, 3rd ed. (
Johns Hopkins University Press
,
Baltimore, MD
,
2005
), Vol. 1, pp.
312
529
.
2.
J.
Habersetzer
,
G.
Schuller
, and
G.
Neuweiler
, “
Foraging behavior and Doppler shift compensation in echolocating hipposiderid bats, Hipposideros bicolor and Hipposideros speoris
,”
J. Comp. Physiol. A
155
(
4
),
559
567
(
1984
).
3.
G.
Neuweiler
,
W.
Metzner
,
U.
Heilmann
,
R.
Rübsamen
,
M.
Eckrich
, and
H. H.
Costa
, “
Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka
,”
Behav. Ecol. Sociobiol.
20
,
53
67
(
1987
).
4.
R.
Müller
, “
Dynamics of biosonar systems in horseshoe bats
,”
Eur. Phys. J.: Spec. Top.
224
(
17-18
),
3393
3406
(
2015
).
5.
S.
Hiryu
,
K.
Katsura
,
L. K.
Lin
,
H.
Riquimaroux
, and
Y.
Watanabe
, “
Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight
,”
J. Acoust. Soc. Am.
118
(
6
),
3927
3933
(
2005
).
6.
M.
Trappe
and
H.-U.
Schnitzler
, “
Doppler-shift compensation in insect-catching horseshoe bats
,”
Naturwissenschaften
69
(
4
),
193
194
(
1982
).
7.
R.
Kober
and
H.-U.
Schnitzler
, “
Information in sonar echoes of fluttering insects available for echolocating bats
,”
J. Acoust. Soc. Am.
87
,
882
896
(
1990
).
8.
L.
Feng
,
L.
Gao
,
H.
Lu
, and
R.
Müller
, “
Noseleaf dynamics during pulse emission in horseshoe bats
,”
PLoS One
7
(
5
),
e34685
(
2012
).
9.
W.
He
,
S.
Pedersen
,
A. K.
Gupta
,
J. A.
Simmons
, and
R.
Müller
, “
Lancet dynamics in greater horseshoe bats, Rhinolophus ferrumequinum
,”
PLoS One
10
(
4
),
e0121700
(
2015
).
10.
A. K.
Gupta
,
D.
Webster
, and
R.
Müller
, “
Interplay of furrows and shape dynamics in the lancet of the horseshoe bat noseleaf
,”
J. Acoust. Soc. Am.
138
(
5
),
3188
3194
(
2015
).
11.
Y.
Fu
,
P.
Caspers
, and
R.
Müller
, “
A dynamic ultrasonic emitter inspired by horseshoe bat noseleaves
,”
Bioinspiration Biomimetics
11
(
3
),
036007
(
2016
).
12.
N.
Matsuta
,
S.
Hiryu
,
E.
Fujioka
,
Y.
Yamada
,
H.
Riquimaroux
, and
Y.
Watanabe
, “
Adaptive beam-width control of echolocation sounds by CF–FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight
,”
J. Exp. Biol.
216
(
7
),
1210
1218
(
2013
).
13.
H.
Schneider
, “
Die Ohrmuskulatur von Asellia tridens Geoffr. (Hipposideridae) und Myotis myotis Borkh. (Vespertilionidae) (Chiroptera)” [“The ear musculature of Asellia tridens Geoff. (Hipposideridae) and Myotis myotis Borkh. (Vespertilionidae) (Chiroptera)”]
,
Zool. Jb., Abt. Anat. u. Ontog.
79
,
93
122
(
1961
).
14.
H.
Schneider
and
F. P.
Möhres
, “
Die Ohrbewegungen der Hufeisennasenfledermäuse (Chiroptera, Rhinolophidae) und der Mechanismus des Bildhörens” (“The ear motions of horseshoe bats (Chiroptera, Rhinolophidae) and the mechanism of image hearing”)
,
Z. Vergl. Physiol.
44
(
1
),
1
40
(
1960
).
15.
D. R.
Griffin
,
D. C.
Dunning
,
D. A.
Cahlander
, and
F. A.
Webster
, “
Correlated orientation sounds and ear movements of horseshoe bats
,”
Nature
196
,
1185
1188
(
1962
).
16.
J. D.
Pye
,
M.
Flinn
, and
A.
Pye
, “
Correlated orientation sounds and ear movements of horseshoe bats
,”
Nature
196
,
1186
1188
(
1962
).
17.
J. D.
Pye
and
L. H.
Roberts
, “
Ear movements in a hipposiderid bat
,”
Nature
225
,
285
286
(
1970
).
18.
V. A.
Walker
,
H.
Peremans
, and
J. C. T.
Hallam
, “
One tone, two ears, three dimensions: A robotic investigation of pinnae movements used by rhinolophid and hipposiderid bats
,”
J. Acoust. Soc. Am.
104
(
1
),
569
579
(
1998
).
19.
J.
Mogdans
,
J.
Ostwald
, and
H.-U.
Schnitzler
, “
The role of pinna movement for the localization of vertical and horizontal wire obstacles in the greater horseshoe bat, Rhinolopus ferrumequinum
,”
J. Acoust. Soc. Am.
84
(
5
),
1676
1679
(
1988
).
20.
L.
Gao
,
S.
Balakrishnan
,
W.
He
,
Z.
Yan
, and
R.
Müller
, “
Ear deformations give bats a physical mechanism for fast adaptation of ultrasonic beampatterns
,”
Phys. Rev. Lett.
107
(
21
),
214301
(
2011
).
21.
S. Z.
Meymand
,
M.
Pannala
, and
R.
Müller
, “
Characterization of the time-variant behavior of a biomimetic beamforming baffle
,”
J. Acoust. Soc. Am.
133
(
2
),
1141
1150
(
2013
).
22.
M.
Pannala
,
S. Z.
Meymand
, and
R.
Müller
, “
Interplay of static and dynamic features in biomimetic smart ears
,”
Bioinspiration Biomimetics
8
(
2
),
026008
(
2013
).
23.
R.
Piraccini
,
The IUCN Red List of Threatened Species
(
International Union for Conservation of Nature and Natural Resources
,
Cambridge, UK
,
2016
), Chap. Rhinolophus ferrumequinum, p.
e. T19517A21973253
.
24.
H.
Zhao
,
S.
Zhang
,
M.
Zuo
, and
J.
Zhou
, “
Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae
,”
J. Zool. (London)
259
(
2
),
189
195
(
2003
).
25.
P.
Bates
,
S.
Bumrungsri
,
C.
Francis
, and
G.
Csorba
,
The IUCN Red List of Threatened Species
(
International Union for Conservation of Nature and Natural Resources
,
Cambridge, UK
,
2008
), chapter Hipposideros armiger, p.
e.T10110A3162617
.
26.
J. Y.
Bouguet
and
P.
Perona
, “
Camera calibration from points and lines in dual-space geometry
,” in
5th European Conference on Computer Vision
, Freiburg, Germany,
1998
.
27.
A. J.
Izenman
, “
Linear discriminant analysis
,” in
Springer Texts in Statistics
(
Springer Science+Business Media
,
New York
,
2013
), pp.
237
280
.
28.
P. J.
Besl
and
N. D.
McKay
,
A Method for Registration of 3-D Shapes
(
IEEE Computer Society
,
Washington, DC
,
1992
), Vol. 14, pp.
239
256
.
29.
See supplementary material at http://dx.doi.org/10.1121/1.4982042 for high-speed video recordings showing examples of rigid rotation and open–close pinna motions.

Supplementary Material

You do not currently have access to this content.