The Bayesian framework for parameter inference provides a basis from which subject-specific reduced-order vocal fold models can be generated. Previously, it has been shown that a particle filter technique is capable of producing estimates and associated credibility intervals of time-varying reduced-order vocal fold model parameters. However, the particle filter approach is difficult to implement and has a high computational cost, which can be barriers to clinical adoption. This work presents an alternative estimation strategy based upon Kalman filtering aimed at reducing the computational cost of subject-specific model development. The robustness of this approach to Gaussian and non-Gaussian noise is discussed. The extended Kalman filter (EKF) approach is found to perform very well in comparison with the particle filter technique at dramatically lower computational cost. Based upon the test cases explored, the EKF is comparable in terms of accuracy to the particle filter technique when greater than 6000 particles are employed; if less particles are employed, the EKF actually performs better. For comparable levels of accuracy, the solution time is reduced by 2 orders of magnitude when employing the EKF. By virtue of the approximations used in the EKF, however, the credibility intervals tend to be slightly underpredicted.

1.
B. D.
Erath
,
M.
Zañartu
,
K. C.
Stewart
,
M. W.
Plesniak
,
D. E.
Sommer
, and
S. D.
Peterson
, “
A review of lumped-element models of voiced speech
,”
Speech Commun.
55
,
667
690
(
2013
).
2.
I.
Steinecke
and
H.
Herzel
, “
Bifurcations in an asymmetric vocal-fold model
,”
J. Acoust. Soc. Am.
97
,
1874
1884
(
1995
).
3.
D. D.
Mehta
,
M.
Zañartu
,
T. F.
Quatieri
,
D. D.
Deliyski
, and
R. E.
Hillman
, “
Investigating acoustic correlates of human vocal fold phase asymmetry through mathematical modeling and laryngeal high-speed videoendoscopy
,”
J. Acoust. Soc. Am.
130
,
3999
4009
(
2011
).
4.
M.
Zañartu
,
L.
Mongeau
, and
G. R.
Wodicka
, “
Influence of acoustic loading on an effective single mass model of the vocal folds
,”
J. Acoust. Soc. Am.
121
,
1119
1129
(
2007
).
5.
I. R.
Titze
, “
Nonlinear source-filter coupling in phonation: Theory
,”
J. Acoust. Soc. Am.
123
,
2733
2749
(
2008
).
6.
B. D.
Erath
,
S. D.
Peterson
,
M.
Zañartu
,
G. R.
Wodicka
, and
M. W.
Plesniak
, “
A theoretical model of the pressure distributions arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds
,”
J. Acoust. Soc. Am.
130
,
389
403
(
2011
).
7.
B. D.
Erath
,
M.
Zañartu
,
S. D.
Peterson
, and
M. W.
Plesniak
, “
Nonlinear vocal fold dynamics resulting from asymmetric fluid loading on a two-mass model of speech
,”
Chaos
21
,
033113
(
2011
).
8.
B.
Cranen
and
J.
Schroeter
, “
Modeling a leaky glottis
,”
Phonetics
23
,
165
177
(
1995
).
9.
J. C.
Ho
,
M.
Zañartu
, and
G. R.
Wodicka
, “
An anatomically based, time-domain acoustic model of the subglottal system for speech production
,”
J. Acoust. Soc. Am.
129
,
1531
1547
(
2011
).
10.
J.
Lucero
, “
A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset
,”
J. Acoust. Soc. Am.
105
,
423
431
(
1999
).
11.
S. R.
Moisik
and
J. H.
Esling
, “
Modeling the biomechanical influence of epilaryngeal structure on the vocal folds: A low-dimensional model of vocal-ventricular fold coupling
,”
J. Speech, Lang., Hear. Res.
57
,
S687
S704
(
2014
).
12.
P. H.
Dejonckere
and
M.
Kob
, “
Pathogenesis of vocal fold nodules: New insights from a modelling approach
,”
Folia Phoniatr. Logop.
61
,
171
179
(
2009
).
13.
M.
Zañartu
,
G. E.
Galindo
,
B. D.
Erath
,
S. D.
Peterson
,
G. R.
Wodicka
, and
R. E.
Hillman
, “
Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction
,”
J. Acoust. Soc. Am.
136
,
3262
3271
(
2014
).
14.
M.
Dollinger
,
U.
Hoppe
,
F.
Hettlich
,
J.
Lohscheller
,
S.
Schuberth
, and
U.
Eysholdt
, “
Vibration parameter extraction from endoscopic image series of the vocal folds
,”
IEEE Trans. Biomed. Eng.
49
,
773
781
(
2002
).
15.
R.
Schwarz
,
M.
Döllinger
,
T.
Wurzbacher
,
U.
Eysholdt
, and
J.
Lohscheller
, “
Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model
,”
J. Acoust. Soc. Am.
123
,
2717
2732
(
2008
).
16.
T.
Wurzbacher
,
M.
Döllinger
,
R.
Schwarz
,
U.
Hoppe
,
U.
Eysholdt
, and
J.
Lohscheller
, “
Spatiotemporal classification of vocal fold dynamics by a multimass model comprising time-dependent parameters
,”
J. Acoust. Soc. Am.
123
,
2324
2334
(
2008
).
17.
C.
Tao
,
Y.
Zhang
, and
J. J.
Jiang
, “
Extracting physiologically relevant parameters of vocal folds from high-speed video image series
,”
IEEE Trans. Biomed. Eng.
54
,
794
801
(
2007
).
18.
Y.
Zhang
,
C.
Tao
, and
J. J.
Jiang
, “
Parameter estimation of an asymmetric vocal-fold system from glottal area time series using chaos synchronization
,”
Chaos
16
,
023118
(
2006
).
19.
A.
Yang
,
M.
Stingl
,
D. A.
Berry
,
J.
Lohscheller
,
D.
Voigt
,
U.
Eysholdt
, and
M.
Döllinger
, “
Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model
,”
J. Acoust. Soc. Am.
130
,
948
964
(
2011
).
20.
A.
Yang
,
D. A.
Berry
,
M.
Kaltenbacher
, and
M.
Döllinger
, “
Three-dimensional biomechanical properties of human vocal folds: Parameter optimization of a numerical model to match in vitro dynamics
,”
J. Acoust. Soc. Am.
131
,
1378
1390
(
2012
).
21.
R.
Schwarz
,
U.
Hoppe
,
M.
Schuster
,
T.
Wurzbacher
,
U.
Eysholdt
, and
J.
Lohscheller
, “
Classification of unilateral vocal fold paralysis by endoscopic digital high-speed recordings and inversion of a biomechanical model
,”
IEEE Trans. Biomed. Eng.
53
,
1099
1108
(
2006
).
22.
T.
Wurzbacher
,
R.
Schwarz
,
M.
Döllinger
,
U.
Hoppe
,
U.
Eysholdt
, and
J.
Lohscheller
, “
Model-based classification of nonstationary vocal fold vibrations
,”
J. Acoust. Soc. Am.
120
,
1012
1027
(
2006
).
23.
S. J.
Rupitsch
,
J.
Ilg
,
A.
Sutor
,
R.
Lerch
, and
M.
Döllinger
, “
Simulation based estimation of dynamic mechanical properties for viscoelastic materials used for vocal fold models
,”
J. Sound Vib.
330
,
4447
4459
(
2011
).
24.
E.
Cataldo
,
C.
Soize
, and
R.
Sampaio
, “
Uncertainty quantification of voice signal production mechanical model and experimental updating
,”
Mech. Syst. Signal Process.
40
,
718
726
(
2013
).
25.
J.
Kaipio
and
E.
Somersalo
,
Statistical and Computational Inverse Problems
(
Springer
,
New York
,
2005
), pp.
1
144
.
26.
P. J.
Hadwin
,
G. E.
Galindo
,
K. J.
Daun
,
M.
Zañartu
,
B. D.
Erath
,
E.
Cataldo
, and
S. D.
Peterson
, “
Non-stationary Bayesian estimation of parameters from a body cover model of the vocal folds
,”
J. Acoust. Soc. Am.
139
,
2683
2696
(
2016
).
27.
J. L.
Beck
and
K.
Yuen
, “
Model selection using response measurements: Bayesian probabilistic approach
,”
J. Eng. Mech.
130
,
192
203
(
2004
).
28.
B. H.
Story
and
I. R.
Titze
, “
Voice simulation with a body-cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
,
1249
1260
(
1995
).
29.
I. R.
Titze
and
B. H.
Story
, “
Rules for controlling low-dimensional vocal fold models with muscle activation
,”
J. Acoust. Soc. Am.
112
,
1064
1076
(
2002
).
30.
K.
Ishizaka
and
J. L.
Flanagan
, “
Synthesis of voiced sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
,
1233
1268
(
1972
).
31.
I. R.
Titze
, “
Parameterization of the glottal area, glottal flow, and vocal fold contact area
,”
J. Acoust. Soc. Am.
75
,
570
580
(
1984
).
32.
B. H.
Story
, “
Physiologically-based speech simulation using an enhanced wave-reflection model of the vocal tract
,” Ph.D. thesis,
University of Iowa
,
1995
.
33.
E.
Yumoto
and
W. J.
Gould
, “
Harmonics-to-noise ratio as an index of the degree of hoarseness
,”
J. Acoust. Soc. Am.
71
,
1544
1550
(
1982
).
34.
W. S.
Cleveland
and
S. J.
Devlin
, “
Locally weighted regression: An approach to regression analysis by local fitting
,”
J. Am. Statist. Assoc.
83
,
598
610
(
1988
).
You do not currently have access to this content.