Newer imaging and therapeutic ultrasound technologies may benefit from in situ pressure levels higher than conventional diagnostic ultrasound. One example is the recently developed use of ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe has been used to deliver the acoustic pushing pulses. The probe is a curvilinear array comprising 128 elements equally spaced along a convex cylindrical surface. The effectiveness of the treatment can be increased by using higher transducer output to provide a stronger pushing force; however nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the three-dimensional Westervelt equation with the boundary condition set to match low power measurements of the acoustic pressure field. Nonlinear focal waveforms simulated for different numbers of operating elements of the array at several output power levels were compared to fiber-optic hydrophone measurements and were found to be in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of a diagnostic imaging probe.

1.
K. R.
Nightingale
,
C. C.
Church
,
G.
Harris
,
K. A.
Wear
,
M. R.
Bailey
,
P. L.
Carson
,
H.
Jiang
,
K. L.
Sandstrom
,
T. L.
Szabo
, and
M. C.
Ziskin
, “
Conditionally increased acoustic pressures in nonmetal diagnostic ultrasound examinations without contrast agents: A preliminary assessment
,”
J. Ultrasound Med.
34
,
1
41
(
2015
).
2.
J. R.
Doherty
,
G. E.
Trahey
,
K. R.
Nightingale
, and
M. L.
Palmeri
, “
Acoustic radiation force elasticity imaging in diagnostic ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
(
4
),
685
701
(
2013
).
3.
J. D.
Harper
,
B.
Dunmire
,
Y. N.
Wang
,
J. C.
Simon
,
H. D.
Liggitt
,
M.
Paun
,
B. W.
Cunitz
,
F.
Starr
,
M. R.
Bailey
,
K.
Penniston
,
F. C.
Lee
,
R. S.
His
, and
M. D.
Sorensen
, “
Preclinical safety and effectiveness studies of ultrasonic propulsion of kidney stones
,”
Urology
84
(
2
),
484
493
(
2014
).
4.
A.
Shah
,
N.
Owen
,
W.
Lu
,
B.
Cunitz
,
P.
Kaczkowski
,
J.
Harper
,
M.
Bailey
, and
L.
Crum
, “
Novel ultrasound method to reposition kidney stones
,”
Urol. Res.
38
(
6
),
491
495
(
2010
).
5.
P. C.
May
,
M. R.
Bailey
, and
J. D.
Harper
, “
Ultrasonic propulsion of kidney stones
,”
Curr. Opin. Urol.
26
(
3
),
264
270
(
2016
).
6.
C. D.
Scales
,
A. C.
Smith
,
J. M.
Hanley
,
C. S.
Saigal
, and
Urologic Diseases in America Project
, “
Prevalence of kidney stones in the United States
,”
Eur. Urol.
62
(
1
),
160
165
(
2012
).
7.
A.
Skolarikosa
,
G.
Alivizatosa
, and
J.
Rosetteb
, “
Extracorporeal shock wave lithotripsy 25 years later: Complications and their prevention
,”
Eur. Urol.
50
(
5
),
981
990
(
2006
).
8.
M. M.
Osman
,
Y.
Alfano
,
S.
Kamp
,
A.
Haecker
,
P.
Alken
,
M. S.
Michel
, and
T.
Knoll
, “
5-year-follow-up of patients with clinically insignificant residual fragments after extracorporeal shockwave lithotripsy
,”
Eur. Urol.
47
(
6
),
860
864
(
2005
).
9.
M. S.
Pearle
,
J. E.
Lingeman
,
R.
Leveillee
,
R.
Kuo
,
G. M.
Preminger
,
R. B.
Nadler
,
J.
Macaluso
,
M.
Monga
,
U.
Kumar
,
J.
Dushinski
,
D. M.
Albala
,
J. S.
Wolf
,
D.
Assimos
,
M.
Fabrizio
,
L. C.
Munch
,
S. Y.
Nakada
,
B.
Auge
,
J.
Honey
,
K.
Ogan
,
J.
Pattaras
,
E. M.
Mcdougall
,
T. D.
Averch
,
T.
Turk
,
P.
Pietrow
, and
S.
Watkins
, “
Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less
,”
J. Urol.
173
(
6
),
2005
2009
(
2005
).
10.
O. A.
Sapozhnikov
and
M. R.
Bailey
, “
Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid
,”
J. Acoust. Soc. Am.
133
(
2
),
661
676
(
2013
).
11.
J. D.
Harper
,
B. W.
Cunitz
,
B.
Dunmire
,
F. C.
Lee
,
M. D.
Sorensen
,
R. S.
Hsi
,
J.
Thiel
,
H.
Wessells
,
J. E.
Lingeman
, and
M. R.
Bailey
, “
First-in-human feasibility trial of ultrasonic propulsion of kidney stones
,”
J. Urol.
195
(
4
),
956
964
(
2016
).
12.
T.
Christopher
and
E. L.
Carstensen
, “
Finite amplitude distortion and its relationship to linear derating formulae for diagnostic ultrasound systems
,”
Ultrasound Med. Biol.
22
(
8
),
1103
1116
(
1996
).
13.
O. V.
Bessonova
,
V. A.
Khokhlova
,
M. R.
Bailey
,
M. S.
Canney
, and
L. A.
Crum
, “
Focusing of high power ultrasound beams and limiting values of shock wave parameters
,”
Acoust. Phys.
55
(
4–5
),
463
473
(
2009
).
14.
M. A.
Averkiou
, “
Tissue harmonic imaging
,” in
IEEE Ultrasonics Symposium
(
2000
), pp.
1563
1572
.
15.
X.
Yang
and
R. O.
Cleveland
, “
Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging
,”
J. Acoust. Soc. Am.
117
(
1
),
113
123
(
2005
).
16.
V. A.
Khokhlova
,
A. E.
Ponomarev
,
M. A.
Averkiou
, and
L. A.
Crum
, “
Nonlinear pulsed ultrasound beams radiated by rectangular focused diagnostic transducers
,”
Acoust. Phys.
52
(
4
),
481
489
(
2006
).
17.
C.
Perez
,
H.
Chen
,
T. J.
Matula
,
M. M.
Karzova
, and
V. A.
Khokhlova
, “
Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shockwave therapy device
,”
J. Acoust. Soc. Am.
134
(
2
),
1663
1674
(
2013
).
18.
M. S.
Canney
,
M. R.
Bailey
,
L. A.
Crum
,
V. A.
Khokhlova
, and
O. A.
Sapozhnikov
, “
Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach
,”
J. Acoust. Soc. Am.
124
,
2406
2420
(
2008
).
19.
O.
Bessonova
and
V.
Wilkens
, “
Membrane hydrophone measurement and numerical simulation of HIFU fields up to developed shock regimes
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
(
2
),
290
300
(
2013
).
20.
W.
Kreider
,
P. V.
Yuldashev
,
O. A.
Sapozhnikov
,
N.
Farr
,
A.
Partanen
,
M. R.
Bailey
, and
V. A.
Khokhlova
, “
Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
(
8
),
1683
1698
(
2013
).
21.
J.
Staudenraus
and
W.
Eisenmenger
, “
Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water
,”
Ultrasonics
31
(
4
),
267
273
(
1993
).
22.
K. A.
Wear
,
P. M.
Gammell
,
S.
Maruvada
,
Y.
Liu
, and
G. R.
Harris
, “
Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
61
(
1
),
62
75
(
2014
).
23.
P. J.
Westervelt
, “
Parametric acoustic array
,”
J. Acoust. Soc. Am.
35
(
4
),
535
537
(
1963
).
24.
P. V.
Yuldashev
and
V. A.
Khokhlova
, “
Simulation of three-dimensional nonlinear fields of ultrasound therapeutic arrays
,”
Acoust. Phys.
57
(
3
),
334
343
(
2011
).
25.
P. B.
Rosnitskiy
,
P. V.
Yuldashev
, and
V. A.
Khokhlova
, “
Effect of the angular aperture of medical ultrasound transducers on the parameters of nonlinear ultrasound field with shocks at the focus
,”
Acoust. Phys.
61
(
3
),
301
307
(
2015
).
26.
H. T.
O'Neil
, “
Theory of focusing radiators
,”
J. Acoust. Soc. Am.
21
,
516
526
(
1949
).
27.
M. M.
Karzova
,
M. V.
Averianov
,
O. A.
Sapozhnikov
, and
V. A.
Khokhlova
, “
Mechanisms for saturation of nonlinear pulsed and periodic signals in focused acoustic beams
,”
Acoust. Phys.
58
(
1
),
81
89
(
2012
).
28.
Y. N.
Makov
,
V. J.
Sanchez-Morcillo
,
F.
Camarena
, and
V.
Espinosa
, “
Nonlinear change of the on-axis pressure and intensity maxima positions and its relation with the linear focal shift effect
,”
Ultrasonics
48
,
678
686
(
2008
).
29.
F.
Camarena
,
S.
Adrian-Martinez
,
N.
Jimenez
, and
V.
Sanchez-Morcillo
, “
Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams
,”
J. Acoust. Soc. Am.
134
(
2
), Pt. 2,
1463
1472
(
2013
).
30.
V. A.
Khokhlova
,
R.
Souchon
,
J.
Tavakkoli
,
O. A.
Sapozhnikov
, and
D.
Cathignol
, “
Numerical modeling of finite amplitude sound beams: Shock formation in the near field of a cw plane piston source
,”
J. Acoust. Soc. Am.
110
(
1
),
95
108
(
2001
).
31.
M.
Karzova
,
V.
Khokhlova
,
S.
Ollivier
,
E.
Salze
, and
P.
Blanc-Benon
, “
Mach stem formation for acoustic weak shock waves: Experiment and numerical modeling
,”
J. Acoust. Soc. Am.
137
(
6
),
EL436
EL442
(
2015
).
32.
O. V.
Bessonova
,
V. A.
Khokhlova
,
M. S.
Canney
,
M. R.
Bailey
, and
L. A.
Crum
, “
A derating method for therapeutic applications of high intensity focused ultrasound
,”
Acoust. Phys.
56
(
3
),
354
363
(
2010
).
33.
T. D.
Khokhlova
,
M. S.
Canney
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
,
L. A.
Crum
, and
M. R.
Bailey
, “
Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling
,”
J. Acoust. Soc. Am.
130
(
5
),
3498
3510
(
2011
).
You do not currently have access to this content.