The preceding paper in this series [Mantouka, Dogan, White, and Leighton, J. Acoust. Soc. Am. 140, 274–282 (2016)] presented a nonlinear model for acoustic propagation in gassy marine sediments, the baseline for which was established by Leighton [Geo. Res. Lett. 34, L17607 (2007)]. The current paper aims further advancement on those two studies by demonstrating the particular effects of the sediment rheology, the dispersion and dissipation of the first compressional wave, and the higher order re-scattering from other bubbles. Sediment rheology is included through the sediment porosity and the definition of the contact interfaces of bubbles with the solid grains and the pore water. The intrinsic attenuation and the dispersion of the compressional wave are incorporated using the effective fluid density model [Williams, J. Acoust. Soc. Am. 110, 2276–2281 (2001)] for the far field (fully water-saturated sediment). The multiple scattering from other bubbles is included using the method of Kargl [J. Acoust. Soc. Am. 11, 168–173 (2002)]. The overall nonlinear formulation is then reduced to the linear limit in order to compare with the linear theory of Anderson and Hampton [J. Acoust. Soc. Am. 67, 1890–1903 (1980)], and the results for the damping coefficients, the sound speed, and the attenuation are presented.

1.
A. L.
Anderson
and
L. D.
Hampton
, “
Acoustics of gas-bearing sediments. I. Background
,”
J. Acoust. Soc. Am.
67
(
6
),
1865
1889
(
1980
).
2.
A. L.
Anderson
and
L. D.
Hampton
, “
Acoustics of gas-bearing sediment. II. Measurements and models
,”
J. Acoust. Soc. Am.
67
(
6
),
1890
1903
(
1980
).
3.
T. G.
Leighton
, “
Theory for acoustic propagation in marine sediment containing gas bubbles which may pulsate in a non-stationary nonlinear model
,”
Geophys. Res. Lett.
34
,
L17607
, doi: (
2007
).
4.
A.
Mantouka
,
H.
Dogan
,
P. R.
White
, and
T. G.
Leighton
, “
Modelling acoustic scattering, sound speed, and attenuation in gassy soft marine sediments
,”
J. Acoust. Soc. Am.
140
,
274
282
(
2016
).
5.
A. I.
Best
,
M. D.
Richardson
,
B. P.
Boudreau
,
A. G.
Judd
,
I.
Leifer
,
A. P.
Lyons
,
C. S.
Martens
,
D. L.
Orange
, and
S. J.
Wheeler
, “
Shallow bed methane gas could pose coastal hazard
,”
EOS Trans.
87
(
22
),
213
217
(
2006
).
6.
I. M.
Brooks
,
M. J.
Yelland
,
R. C.
Upstill-Goddard
,
P. D.
Nightingale
,
S.
Archer
,
E.
D'Asaro
,
R.
Beale
,
C.
Beatty
,
B.
Blomquist
,
A. A.
Bloom
,
B. J.
Brooks
,
J.
Cluderay
,
D.
Coles
,
J.
Dacey
,
M.
DeGrandpre
,
J.
Dixon
,
W. M.
Drennan
,
J.
Gabriele
,
L.
Goldson
,
N.
Hardman-Mountford
,
M. K.
Hill
,
M.
Horn
,
P.-C.
Hsueh
,
B.
Huebert
,
G.
de Leeuw
,
T. G.
Leighton
,
M.
Liddicoat
,
J. J. N.
Lingard
,
C.
McNeil
,
J. B.
McQuaid
,
B. I.
Moat
,
G.
Moore
,
C.
Neill
,
S. J.
Norris
,
S.
O'Doherty
,
R. W.
Pascal
,
J.
Prytherch
,
M.
Rebozo
,
E.
Sahlee
,
M.
Salter
,
U.
Schuster
,
I.
Skjelvan
,
H.
Slagter
,
M. H.
Smith
,
P. D.
Smith
,
M.
Srokosz
,
J. A.
Stephens
,
P. K.
Taylor
,
M.
Telszewski
,
R.
Walsh
,
B.
Ward
,
D. K.
Woolf
,
D.
Young
, and
H.
Zemmelink
, “
Physical exchanges at the Air Sea Interface: UK SOLAS field measurements
,”
Bull. Am. Meteorol. Soc.
90
(
5
),
629
644
(
2009
).
7.
T. G.
Leighton
and
P. R.
White
, “
Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions
,”
Proc. R. Soc. A
468
,
485
510
(
2012
).
8.
A. I.
Best
,
M. D. J.
Tuffin
,
J. K.
Dix
, and
J. M.
Bull
, “
Tidal height and frequency dependence of acoustic velocity and attenuation in shallow gassy marine sediments
,”
J. Geophys. Res.
109
(
B8
),
B08101
, doi: (
2004
).
9.
J.
Blackford
,
H.
Stahl
,
J.
Bull
,
B.
Berges
,
M.
Cevatoglu
,
A.
Lichtschlag
,
D.
Connelly
,
R.
James
,
J.
Kita
,
D.
Long
,
M.
Naylor
,
K.
Shitashima
,
D.
Smith
,
P.
Taylor
,
I.
Wright
,
M.
Akhurst
,
B.
Chen
,
T.
Gernon
,
C.
Hauton
,
M.
Hayashi
,
H.
Kaieda
,
T. G.
Leighton
,
T.
Sato
,
M.
Sayer
,
M.
Suzumura
,
K.
Tait
,
M.
Vardy
,
P. R.
White
, and
S.
Widdicombe
, “
Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage
,”
Nature Climate Change
4
(
11
),
1011
1016
(
2014
).
10.
B. J. P.
Berges
,
T. G.
Leighton
, and
P. R.
White
, “
Passive acoustic quantification of gas fluxes during controlled gas release experiments
,”
Int. J. Greenhouse Gas Control
38
,
64
79
(
2015
).
11.
M. A.
Biot
, “
Theory of propagation of elastic waves in fluid-saturated porous solids: I. Low-frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
168
178
(
1956
).
12.
M. A.
Biot
, “
Theory of propagation of elastic waves in fluid-saturated porous solids: II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
179
191
(
1956
).
13.
T. J.
Plona
, “
Observation of a second compressional wave in a porous medium at ultrasonic frequencies
,”
Appl. Phys. Lett.
36
(
4
),
259
261
(
1980
).
14.
D. L.
Johnson
and
T. J.
Plona
, “
Acoustic slow waves and the consolidation transition
,”
J. Acoust. Soc. Am.
72
,
556
565
(
1982
).
15.
R. D.
Stoll
and
G. M.
Bryan
, “
Wave attenuation in saturated sediments
,”
J. Acoust. Soc. Am.
47
(
5
),
1440
1447
(
1970
).
16.
R. D.
Stoll
, “
Experimental studies of attenuation in sediments
,”
J. Acoust. Soc. Am.
66
(
4
),
1152
1160
(
1979
).
17.
R. D.
Stoll
, “
Marine sediment acoustics
,”
J. Acoust. Soc. Am.
77
(
5
),
1789
1799
(
1985
).
18.
A.
Bedford
and
M.
Stern
, “
A model for wave propagation in gassy sediments
,”
J. Acoust. Soc. Am.
73
(
2
),
409
417
(
1983
).
19.
J. A.
Hawkins
and
A.
Bedford
, “
Variational theory of bubbly media with a distribution of bubble sizes. 2: Porous solids
,”
Int. J. Eng. Sci.
30
(
9
),
1177
1186
(
1992
).
20.
J. L.
Buchanan
, “
A comparison of broadband models for sand sediments
,”
J. Acoust. Soc. Am.
120
(
6
),
3584
3598
(
2006
).
21.
D. M. J.
Smeulders
and
M. E. H.
Van Dongen
, “
Wave propagation in porous media containing a dilute gas-liquid mixture
,”
J. Fluid Mech.
343
,
351
373
(
1997
).
22.
V. E.
Nakoryakov
and
V. E.
Dontsov
, “
Pressure waves in porous medium saturated with liquid containing gas bubbles
,”
J. Eng. Mech.
131
,
966
973
(
2005
).
23.
M. A.
Biot
, “
Generalized theory of acoustic propagation in porous dissipative media
,”
J. Acoust. Soc. Am.
34
(
9
),
1254
1264
(
1962
).
24.
S. G.
Kargl
,
K. L.
Williams
, and
R.
Lim
, “
Double monopole resonance of a gas-filled, spherical cavity in a sediment
,”
J. Acoust. Soc. Am.
103
(
1
),
265
274
(
1998
).
25.
A. P.
Lyons
,
M. E.
Duncan
, and
A. L.
Anderson
, “
Predictions of the acoustic scattering response of free-methane bubbles in muddy sediments
,”
J. Acoust. Soc. Am.
99
(
1
),
163
172
(
1996
).
26.
G. B. N.
Robb
,
T. G.
Leighton
,
J. K.
Dix
,
A. I.
Best
,
V. F.
Humprey
, and
P. R.
White
, “
Measuring bubble populations in gassy marine sediments: A review
,”
Proc. Inst. Acoust.
28
,
60
68
(
2006
).
27.
M. A.
Ainslie
and
T. G.
Leighton
, “
Near resonant bubble acoustic cross-section corrections, including examples from oceanography, volcanology, and biomedical ultrasound
,”
J. Acoust. Soc. Am.
126
(
5
),
2163
2175
(
2009
).
28.
M. A.
Ainslie
and
T. G.
Leighton
, “
Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble
,”
J. Acoust. Soc. Am.
130
(
5
),
3184
3208
(
2011
).
29.
T. G.
Leighton
, “
From seas to surgeries, from babbling brooks to baby scans: The acoustics of gas bubbles in liquids
,”
Int. J. Modern Phys. B
18
(
25
),
3267
3314
(
2004
).
30.
T. G.
Leighton
, “
What is ultrasound?
,”
Prog. Biophys. Molecular Biol.
93
(
1–3
),
3
83
(
2007
).
31.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic
,
London
,
1994
).
32.
J. G.
Berryman
, “
Long-wavelength propagation in composite elastic media I. Spherical inclusions
,”
J. Acoust. Soc. Am.
68
(
6
),
1808
1819
(
1980
).
33.
J. G.
Berryman
, “
Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions
,”
J. Acoust. Soc. Am.
68
(
6
),
1820
1831
(
1980
).
34.
K. L.
Williams
, “
An effective fluid density model for acoustic propagation in sediments derived from Biot theory
,”
J. Acoust. Soc. Am.
110
(
5
),
2276
2281
(
2001
).
35.
K. W.
Commander
and
A.
Prosperetti
, “
Linear pressure waves in bubbly liquids: Comparison between theory and experiment
,”
J. Acoust. Soc. Am.
85
,
732
746
(
1989
).
36.
X.
Yang
and
C. C.
Church
, “
A model for dynamics of gas bubbles in soft tissue
,”
J. Acoust. Soc. Am.
118
(
6
),
3595
3606
(
2004
).
37.
S. G.
Kargl
, “
Effective medium approach to linear acoustics in bubbly liquids
,”
J. Acoust. Soc. Am.
111
(
1
),
168
173
(
2002
).
38.
J. P.-Y.
Maa
and
A. J.
Mehta
, “
Soft mud response to water waves
,”
J. Waterway, Port, Coastal, Ocean Eng.
116
(
5
),
634
650
(
1990
).
39.
J. P.-Y.
Maa
and
A. J.
Mehta
, “
Soft mud properties: Voigt model
,”
Waterway, Port, Coastal, Ocean Eng.
114
(
6
),
765
770
(
1988
).
40.
H.
Macpherson
, “
The attenuation of water waves over a non-rigid bed
,”
J. Fluid Mech.
97
(
4
),
721
742
(
1980
).
41.
C. C.
Church
, “
The effects of an elastic solid surface layer on the radial pulsations of gas bubbles
,”
J. Acoust. Soc. Am.
97
(
3
),
1510
1521
(
1995
).
42.
A. A.
Doinikov
and
P. A.
Dayton
, “
Spatio-temporal dynamics of an encapsulated gas bubble in an ultrasound field
,”
J. Acoust. Soc. Am.
120
(
2
),
661
669
(
2006
).
43.
D. B.
Khismatullin
and
A.
Nadim
, “
Radial oscillations of encapsulated microbubbles in viscoelastic liquids
,”
Phys. Fluids
14
(
10
),
3534
3557
(
2002
).
44.
E. A.
Zabolotskaya
,
Y. A.
Ilinskii
,
G. D.
Meegan
, and
M. F.
Hamilton
, “
Modifications of the equation for gas bubble dynamics in a soft elastic medium
,”
J. Acoust. Soc. Am.
118
(
4
),
2173
2181
(
2005
).
45.
Z.
Huang
and
H.
Aode
, “
A laboratory study of rheological properties of mudflows in Hangzhou Bay, China
,”
Int. J. Sediment Res.
24
(
4
),
410
424
(
2009
).
46.
M.
Sultanpour
and
F.
Samsami
, “
A comparative study on the rheology and wave dissipation of kaolinite and natural Hendjian Coast mud, the Persian Gulf
,”
Ocean Dyn.
61
,
295
309
(
2011
).
47.
T.
Van Kessel
and
C.
Blom
, “
Rheology of cohesive sediments: Comparison between a natural and an artificial mud
,”
J. Hydraul. Res.
36
(
4
),
591
612
(
1998
).
48.
S. A.
Haghshenas
and
M.
Sultanpour
, “
An analysis of wave dissipation at the Hendjian Coast mud, the Persian Gulf
,”
Ocean Dyn.
61
,
217
232
(
2011
).
49.
W. Y.
Hsu
,
H. H.
Hwung
,
T. J.
Hsu
,
A.
Torres-Freyermuth
, and
R. Y.
Yang
, “
An experimental and numerical investigation on wave-mud interactions
,”
J. Geophys. Res.: Oceans
118
(
3
),
1126
1141
, doi: (
2013
).
50.
J. W. L.
Clarke
and
T. G.
Leighton
, “
A method for estimating time-dependent acoustic cross-sections of bubbles and bubble clouds prior to the steady state
,”
J. Acoust. Soc. Am.
107
(
4
),
1922
1929
(
2000
).
51.
T. G.
Leighton
,
S. D.
Meers
, and
P. R.
White
, “
Propagation through nonlinear time-dependent bubble clouds and the estimation of bubble populations from measured acoustic characteristics
,”
Proc. R. Soc. London A
460
(
2049
),
2521
2550
(
2004
).
52.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, 2nd ed. (
Pergamon
,
Oxford
,
1987
).
53.
H.
Deresiewicz
and
R.
Skalak
, “
On uniqueness in dynamic poro-elasticity
,”
Bull. Seismol. Soc. Am.
53
,
783
789
(
1963
).
54.
A.
Prosperetti
and
A.
Lezzi
, “
Bubble dynamics in a compressible liquid. Part 1. First-order theory
,”
J. Fluid Mech.
168
,
457
478
(
1986
).
55.
J. B.
Keller
and
M. J.
Miksis
, “
Bubble oscillations of large amplitude
,”
J. Acoust. Soc. Am.
68
,
628
633
(
1980
).
56.
A.
Prosperetti
,
L.
Crum
, and
K.
Commander
, “
Nonlinear bubble dynamics
,”
J. Acoust. Soc. Am.
83
,
502
514
(
1988
).
57.
F. S.
Henyey
, “
Corrections to Foldy's effective medium theory for propagation in bubble clouds and other collections of very small scatterers
,”
J. Acoust. Soc. Am.
105
(
4
),
2149
2154
(
1999
).
58.
H.-T.
Chou
,
M. A.
Foda
, and
J. R.
Hunt
, “
Rheological response of cohesive sediments to oscillatory forcing
,” in Nearshore and Estuarine Cohesive Sediment Transport, Coastal Estuarine Science Series 42, Washington, D.C., AGU (
2013
), pp.
126
147
.
59.
M. A.
Foda
,
J. R.
Hunt
, and
H.-T.
Chou
, “
A nonlinear model for the fluidization of marine muds by waves
,”
J. Geophys. Res.
98
(
C4
),
7039
7047
, doi: (
1993
).
60.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
(
John Wiley & Sons
,
New York
,
1980
).
61.
M.
Jain
and
A. J.
Mehta
, “
Role of basic rheological models in determination of wave attenuation over muddy seabeds
,”
Cont. Shelf Res.
29
,
642
651
(
2009
).
62.
I. B.
Andreeva
, “
Scattering of sound by air bladders of fish in deep sound-scattering ocean layers
,”
Sov. Phys. Acoust.
10
,
17
20
(
1964
).
63.
A. I.
Eller
, “
Damping constants of pulsating bubbles
,”
J. Acoust. Soc. Am.
47
,
1469
1470
(
1970
).
64.
E. L.
Hamilton
, “
Compressional wave attenuation in marine sediments
,”
Geophys.
37
,
620
646
(
1972
).
65.
Z.
Toth
,
V.
Spiess
,
J. M.
Mogollon
, and
J. B.
Jensen
, “
Estimating the free gas content in Baltic Sea sediments using compressional wave velocity from marine seismic data
,”
J. Geophys. Res.: Solid Earth
119
,
8577
8593
, doi: (
2014
).
66.
T. G.
Leighton
and
G.
Robb
, “
Preliminary mapping of void fractions and sound speeds in gassy marine sediments from subbottom profiles
,”
J. Acoust. Soc. Am.
124
(
5
),
EL313
EL320
(
2008
).
67.
A. B.
Wood
and
D. E.
Weston
, “
The propagation of sound in mud
,”
Acustica
14
,
156
162
(
1964
).
68.
T. G.
Leighton
, “
A method for estimating sound speed and the void fractions of bubbles from sub-bottom sonar images of gassy seabeds
,”
ISVR Technical Report No. 320
, Southampton UK (
2007
),
30
pp.
69.
See supplementary material at http://dx.doi.org/10.1121/1.4978926 for calculations to check the low frequency limit of the sound speed with the predictions of EDFM.
70.
H. S.
Fogler
and
J. D.
Goddard
, “
Collapse of spherical cavities in viscoelastic liquids
,”
Phys. Fluids
13
(
5
),
1135
1141
(
1970
).
71.
J. G.
Oldroyd
, “
On the formulation of rheological equations of state
,”
Proc. R. Soc. London A
200
,
523
541
(
1950
).

Supplementary Material

You do not currently have access to this content.