In shallow water, low-frequency propagation can be described by modal theory. Acoustical oceanographic measurements under this situation have traditionally relied on spatially filtering signals with arrays of synchronized hydrophones. Recent work has demonstrated how a method called warping allows isolation of individual mode arrivals on a single hydrophone, a discovery that subsequently opened the door for practical single-receiver source localization and geoacoustic inversion applications. Warping is a non-linear resampling of the signal based on a simplistic waveguide model. Because warping is robust to environmental mismatch, it provides accurate estimates of the mode phase even when the environment is poorly known. However, the approach has issues with mode amplitude estimation, particularly for the first arriving mode. As warping is not invariant to time shifting, it relies on accurate estimates of the signal's time origin, which in turn heavily impacts the first mode's amplitude estimate. Here, a revised warping operator is proposed that incorporates as much prior environmental information as possible, and is actually equivalent to compensating the relative phase of each mode. Warping and phase compensation are applied to both simulated and experimental data. The proposed methods notably improve the amplitude estimates of the first arriving mode.

1.
A.
Baggeroer
,
W.
Kuperman
, and
P.
Mikhalevsky
, “
An overview of matched field methods in ocean acoustics
,”
IEEE J. Oceanic Eng.
18
(
4
),
401
424
(
1993
).
2.
M.
Snellen
,
D.
Simons
,
M.
Siderius
,
J.
Sellschopp
, and
P.
Nielsen
, “
An evaluation of the accuracy of shallow water matched field inversion results
,”
J. Acoust. Soc. Am.
109
(
2
),
514
527
(
2001
).
3.
C.
Huang
,
P.
Gerstoft
, and
W.
Hodgkiss
, “
Uncertainty analysis in matched-field geoacoustic inversions
,”
J. Acoust. Soc. Am.
119
(
1
),
197
207
(
2006
).
4.
S. E.
Dosso
and
J.
Dettmer
, “
Bayesian matched-field geoacoustic inversion
,”
Inv. Problems
27
,
055009
(
2011
).
5.
T.
Yang
, “
Effectiveness of mode filtering: A comparison of matched-field and matched-mode processing
,”
J. Acoust. Soc. Am.
87
(5),
2072
2084
(
1990
).
6.
T.
Yang
, “
A method of range and depth estimation by modal decomposition
,”
J. Acoust. Soc. Am.
82
,
1736
1745
(
1987
).
7.
F.
Jensen
,
W.
Kuperman
,
M.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
, 2nd ed. (
AIP
,
New York
,
2011
), Chap. 5, pp.
337
455
.
8.
J.
Buck
,
J.
Preisig
, and
K.
Wage
, “
A unified framework for mode filtering and the maximum a posteriori mode filter
,”
J. Acoust. Soc. Am.
103
(4),
1813
1824
(
1998
).
9.
T.
Neilsen
and
E.
Westwood
, “
Extraction of acoustic normal mode depth functions using vertical line array data
,”
J. Acoust. Soc. Am.
111
(
2
),
748
756
(
2002
).
10.
S.
Jesus
,
M.
Porter
,
Y.
Stephan
,
X.
Demoulin
,
O.
Rodriquez
, and
E.
Coelho
, “
Single hydrophone source localization
,”
EEE J. Oceanic Eng.
25
(
3
),
337
346
(
2000
).
11.
J. P.
Hermand
, “
Broad-band geoacoustic inversion in shallow water from waveguide impulse response measurements on a single hydrophone: Theory and experimental results
,”
IEEE J. Oceanic Eng.
24
,
41
66
(
1999
).
12.
T. C.
Yang
, “
Dispersion and ranging of transient signals in the Arctic Ocean
,”
J. Acoust. Soc. Am.
76
,
262
273
(
1984
).
13.
G.
Le Touzé
,
B.
Nicolas
,
J.
Mars
, and
J.
Lacoume
, “
Matched representations and filters for guided waves
,”
IEEE Trans. Signal Processing
57
(
5
),
1783
1795
(
2009
).
14.
J.
Bonnel
,
C.
Gervaise
,
P.
Roux
,
B.
Nicolas
, and
J.
Mars
, “
Modal depth function estimation using time-frequency analysis
,”
J. Acoust. Soc. Am.
130
,
61
71
(
2011
).
15.
J.
Bonnel
,
S.
Dosso
, and
R.
Chapman
, “
Bayesian geoacoustic inversion of single hydrophone light bulb data using warping dispersion analysis
,”
J. Acoust. Soc. Am.
134
,
120
130
(
2013
).
16.
P.
Petrov
, “
A method for single-hydrophone geoacoustic inversion based on the modal group velocities estimation: Application to a waveguide with inhomogeneous bottom relief
,” in
Days on Diffraction
(
IEEE
,
New York
,
2014
), pp.
186
191
.
17.
L.
Feng-Hua
,
Z.
Bo
, and
G.
Yong-Gang
, “
A method of measuring the in situ seafloor sound speed using two receivers with warping transformation
,”
Chin. Phys. Lett.
31
(
2
),
1
4
(
2014
).
18.
M. S.
Ballard
,
G. V.
Frisk
, and
K. M.
Becker
, “
Estimates of the temporal and spatial variability of ocean sound speed on the new jersey shelf
,”
J. Acoust. Soc. Am.
135
(
6
),
3316
3326
(
2014
).
19.
J.
Bonnel
,
A.
Thode
,
S.
Blackwell
,
K.
Kim
, and
A.
Macrander
, “
Range estimation of bowhead whale (balaena mysticetus) calls in the arctic using a single hydrophone
,”
J. Acoust. Soc. Am.
136
(
1
),
145
155
(
2014
).
20.
J. L.
Crance
,
C. L.
Berchok
,
J.
Bonnel
, and
A. M.
Thode
, “
Northeasternmost record of a north pacific fin whale (balaenoptera physalus) in the Alaskan chukchi sea
,”
Polar Biol.
38
,
1767
1773
(
2015
).
21.
G. A.
Warner
,
S. E.
Dosso
,
D. E.
Hannay
, and
J.
Dettmer
, “
Bowhead whale localization using asynchronous hydrophones in the chukchi sea
,”
J. Acoust. Soc. Am.
140
(
1
),
20
34
(
2016
).
22.
J.
Zeng
,
N. R.
Chapman
, and
J.
Bonnel
, “
Inversion of seabed attenuation using time-warping of close range data
,”
J. Acoust. Soc. Am.
134
,
EL394
EL399
(
2013
).
23.
R.
Duan
,
N. R.
Chapman
,
K.
Yang
, and
Y.
Ma
, “
Sequential inversion of modal data for sound attenuation in sediment at the New Jersey Shelf
,”
J. Acoust. Soc. Am.
139
(
1
),
70
84
(
2016
).
24.
B.
Nicolas
,
G.
Le Touzé
,
C.
Soares
,
S.
Jesus
, and
J. I.
Mars
, “
Incoherent versus coherent matched mode processing for shallow water source localisation using a single hydrophone
,”
Instrument. Viewpoint
,
8
,
67
68
(
2010
).
25.
J.
Bonnel
and
A.
Thode
, “
Range and depth estimation of bowhead whale calls in the arctic using a single hydrophone
,” in
IEEE Sensor Systems for a Changing Ocean (SSCO)
, (
2014
), pp.
1
4
.
26.
J.
Bonnel
,
G.
Le Touzé
,
B.
Nicolas
, and
J.
Mars
, “
Physics-based time-frequency representations for underwater acoustics: Power class utilization with waveguide-invariant approximation
,”
IEEE Signal Processing Mag.
30
(
6
),
120
129
(
2013
).
27.
Y. B.
Qi
,
S. H.
Zhou
,
R. H.
Zhang
, and
Y.
Ren
, “
A waveguide-invariant-based warping operator and its application to passive source range estimation
,”
J. Comput. Acoust.
23
,
1550003
(
2015
).
28.
H.
Niu
,
R.
Zhang
, and
Z.
Li
, “
Theoretical analysis of warping operators for non-ideal shallow water waveguides
,”
J. Acoust. Soc. Am.
136
(
1
),
53
65
(
2014
).
29.
L.
De Marchi
,
A.
Marzani
,
S.
Caporale
, and
N.
Speciale
, “
Ultrasonic guided-waves characterization with warped frequency transforms
,”
IEEE Trans. Ultrason. Ferroelectr. Frequency Control
56
(
10
),
2232
2240
(
2009
).
30.
L.
De Marchi
,
M.
Ruzzene
,
B.
Xu
,
E.
Baravelli
, and
N.
Speciale
, “
Warped basis pursuit for damage detection using lamb waves
,”
IEEE Trans. Ultrason. Ferroelectr. Frequency Control
57
(
12
),
2734
2741
(
2010
).
31.
K.
Xu
,
D.
Ta
,
P.
Moilanen
, and
W.
Wang
, “
Mode separation of lamb waves based on dispersion compensation method
,”
J. Acoust. Soc. Am.
131
(
4
),
2714
2722
(
2012
).
32.
R.
Baraniuk
and
D.
Jones
, “
Unitary equivalence: A new twist on signal processing
,”
IEEE Trans. Signal Processing
43
(
10
),
2269
2282
(
1995
).
33.
I.
Tolstoy
and
C.
Clay
,
Ocean Acoustics: Theory and Experiment in Underwater Sound
(
Acoustical Society of America
,
New York
,
1987
).
34.
M. B.
Porter
, “
The kraken normal mode program
,” Tech. Rep., DTIC Document,
1992
.
35.
E. K.
Westwood
,
C.
Tindle
, and
N.
Chapman
, “
A normal mode model for acousto-elastic ocean environments
,”
J. Acoust. Soc. Am.
100
(
6
),
3631
3645
(
1996
).
36.
S.
Caporale
,
L.
De Marchi
, and
N.
Speciale
, “
Fast computation of frequency warping transforms
,”
IEEE Trans. Signal Processing
58
(
3
),
1110
1121
(
2010
).
37.
J.
Bonnel
,
C.
Gervaise
,
B.
Nicolas
, and
J.
Mars
, “
Single-receiver geoacoustic inversion using modal reversal
,”
J. Acoust. Soc. Am.
131
(
1
),
119
128
(
2012
).
38.
D.
Gao
,
N.
Wang
, and
H.
Wang
, “
A dedispersion transform for sound propagation in shallow water waveguide
,”
J. Comput. Acoust.
18
(
3
),
245
257
(
2010
).
39.
C.
Park
,
W.
Seong
,
P.
Gerstoft
, and
W.
Hodgkiss
, “
Geoacoustic inversion using backpropagation
,”
IEEE J. Oceanic Eng.
35
(
4
),
722
731
(
2010
).
40.
Y.-T.
Lin
,
A.
Newhall
, and
J.
Lynch
, “
Low-frequency broadband sound source localization using an adaptive normal mode back-propagation approach in a shallow-water ocean
,”
J. Acoust. Soc. Am.
131
,
1798
1813
(
2012
).
41.
P.
Petrov
, “
A method for single-hydrophone geoacoustic inversion based on the modal group velocities estimation: Application to a waveguide with inhomogeneous bottom relief
,” in
IEEE Days on Diffraction
(
2014
), pp.
186
191
.
42.
D.
Tang
,
J.
Moum
,
J.
Lynch
,
P.
Abbot
,
R.
Chapman
,
P.
Dahl
,
T.
Duda
,
G.
Gawarkiewicz
,
S.
Glenn
,
J.
Goff
,
H.
Graber
,
J.
Kemp
,
A.
Maffei
,
J.
Nash
, and
A.
Newhall
, “
Shallow Water 06: A joint acoustic propagation/nonlinear internal wave physics experiment
,”
Oceanography
20
,
156
167
(
2007
).
You do not currently have access to this content.