In bone conduction (BC), acoustic signals travel through an individual's bones and soft tissues rather than travelling through the air. While bone conduction hearing and communication are important in everyday life, nature, and technology, little is known about how individual differences affect the transmission of bone-conducted sound. Individuals differ in the sizes, shapes, and proportions of their craniofacial bones, leading to potentially different bone-conducted sound transmission effects in different individuals. Individual differences may influence the audibility and quality of bone-conducted sound, and this was studied using speech intelligibility as an assessment criterion for bone-conducted sound transmission. Thirty-two human participants were first subjected to a series of anthropometric craniofacial measurements. Eight morphologically diverse talkers were recorded with bone microphones placed at different skull locations, and 24 morphologically diverse listeners listened to these samples over bone conduction headphones. Modified Rhyme Test results suggest that skull morphology influences BC speech intelligibility and does so differently at different skull locations. Understanding morphological effects can improve bone conduction sound transmission models and may help to enhance BC technology for a diverse user population.

1.
Acker-Mills
,
B. E.
,
Houtsma
,
A. J. M.
, and
Ahroon
,
W. A.
(
2005
). “
Speech intelligibility with acoustic and contact microphones
,” in
New Directions for Improving Audio Effectiveness. Meeting Proceedings RTO-MP-HFM-123
(
RTO, Neuilly-sur-Seine, France
), pp.
1
14
.
2.
Akeroyd
,
M. A.
(
2008
). “
Are individual differences in speech reception related to individual differences in cognitive ability? A survey of twenty experimental studies with normal and hearing-impaired adults
,”
Int. J. Audiol.
47
,
S53
S71
.
3.
American National Standards Institute and Acoustical Society of America
(
2009
). ANSI/ASA S3.2-2009,
Method for Measuring the Intelligibility of Speech Over Communication Systems
(
American National Standards Institute
,
New York
).
4.
Anonymous
(
1978
). “
Anthropometric source book volume I: Anthropometry for designers
,” edited by
Anthropology Research Project staff and Webb Associates
(National Aeronautics and Space Administration, Yellow Springs, OH), pp.
I1
IX62
.
5.
Au
,
W. W. L.
, and
Hastings
,
M. C.
(
2008
). “
Auditory systems of marine animals
,” in
Principles of Marine Bioacoustics
(
Springer
,
New York
), pp.
227
282
.
6.
Buss
,
E.
,
Hall
,
J. W. I.
, and
Grose
,
J. H.
(
2007
). “
Individual differences in the masking level difference with a narrowband masker at 500 or 2000 Hz
,”
J. Acoust. Soc. Am.
121
,
411
419
.
7.
De Coensel
,
B.
,
Botteldooren
,
D.
, and
De Muer
,
T.
(
2003
). “
1/f noise in rural and urban soundscapes
,”
Acta Acust. Acust.
89
,
287
295
.
8.
Gordon
,
C. C.
,
Churchill
,
T.
,
Clauser
,
C. E.
,
Bradtmiller
,
B.
,
McConville
,
J. T.
,
Tebbetts
,
I.
, and
Walker
,
R. A.
(
1989
). “
1988 Anthropometric survey of U.S. Army personnel: Summary statistics interim report 1989
” (Anthropology Research Project, Yellow Springs, OH), pp.
1
604
.
9.
Gripper
,
M.
,
McBride
,
M.
,
Osafo-Yeboah
,
B.
, and
Jiang
,
X.
(
2007
). “
Using the Callsign Acquisition Test (CAT) to compare the speech intelligibility of air versus bone conduction
,”
Int. J. Ind. Ergon.
37
,
631
641
.
10.
Hayes
,
D. P.
, and
Meltzer
,
L.
(
1967
). “
Bone-conducting microphones
,”
Am. J. Psychol.
80
,
619
624
.
11.
Hazelbaker
,
J. L.
(
2004
). “
Effect of bone conduction transducer placement on distortion product otoacoustic emissions
,” in
Department of Speech and Hearing Science
(
Ohio State University
,
Columbus, OH
), p.
114
.
12.
Henry
,
P.
, and
Letowski
,
T. R.
(
2007
).
Bone Conduction: Anatomy, Physiology, and Communication
(
Army Research Laboratory
,
Aberdeen Proving Ground, MD
), pp.
1
192
.
13.
Hodges
,
M. L.
, and
McBride
,
M. E.
(
2012
). “
Gender differences in bone conduction auditory signal processing: Communication equipment design implications
,”
Int. J. Ind. Ergon.
42
,
49
55
.
14.
Horwitz
,
A. R.
,
Ahlstrom
,
J. B.
, and
Dubno
,
J. R.
(
2012
). “
Individual and level-dependent differences in masking for adults with normal and impaired hearing
,”
J. Acoust. Soc. Am.
131
,
EL323
EL328
.
15.
Kidd
,
G. R.
,
Watson
,
C. S.
, and
Gygi
,
B.
(
2007
). “
Individual differences in auditory abilities
,”
J. Acoust. Soc. Am.
122
,
418
435
.
16.
Kolar
,
J. C.
, and
Salter
,
E. M.
(
1997
).
Craniofacial Anthropometry
(
Charles C. Thomas Books
,
Springfield, IL
), p.
334
.
17.
Lee
,
J. H.
,
Shin
,
S.
, and
Istook
,
C. L.
(
2006
). “
Analysis of human head shapes in the United States
,”
Int. J. Human Ecol.
7
,
77
83
.
18.
Maroonroge
,
S.
,
Emanuel
,
D. C.
, and
Letowski
,
T. R.
(
2009
). “
Basic anatomy of the hearing system
,” in
Helmet-Mounted Displays: Sensation, Perception and Cognition Issues
, edited by
C. E.
Rash
,
M. B.
Russo
,
T. R.
Letowski
, and
E. T.
Schmeisser
(
U.S. Army Aeromedical Research Laboratory
,
Fort Rucker, AL
), pp.
279
306
.
19.
Mason
,
M. J.
(
2003
). “
Bone conduction and seismic sensitivity in golden moles (Chrysochloridae)
,”
J. Zool.
260
,
405
413
.
20.
McBride
,
M.
,
Hodges
,
M.
, and
French
,
J.
(
2008a
). “
Speech intelligibility differences of male and female vocal signals transmitted through bone conduction in background noise: Implications for voice communication headset design
,”
Int. J. Ind. Ergon.
38
,
1038
1044
.
21.
McBride
,
M.
,
Letowski
,
T.
, and
Tran
,
P.
(
2008b
). “
Bone conduction reception: Head sensitivity mapping
,”
Ergonomics
51
,
702
718
.
22.
McBride
,
M.
,
Tran
,
P.
,
Letowski
,
T.
, and
Patrick
,
R.
(
2011
). “
The effect of bone conduction microphone locations on speech intelligibility and sound quality
,”
Appl. Ergon.
42
,
495
502
.
23.
Osafo-Yeboah
,
B.
,
Jiang
,
X.
,
McBride
,
M.
,
Mountjoy
,
D.
, and
Park
,
E.
(
2009
). “
Using the Callsign Acquisition Test (CAT) to investigate the impact of background noise, gender, and bone vibrator location on the intelligibility of bone-conducted speech
,”
Int. J. Ind. Ergon.
39
,
246
254
.
24.
Pollard
,
K. A.
,
Tran
,
P. K.
, and
Letowski
,
T.
(
2015
). “
The effect of vocal and demographic traits on speech intelligibility over bone conduction
,”
J. Acoust. Soc. Am.
137
,
2060
2069
.
25.
Pollard
,
K. A.
,
Tran
,
P. K.
, and
Letowski
,
T. R.
(
2013
). “
A free-field method to calibrate bone conduction transducers
,”
J. Acoust. Soc. Am.
133
,
858
865
.
26.
Stanley
,
R. M.
, and
Walker
,
B. N.
(
2009
). “
Intelligibility of bone-conducted speech at different locations compared to air-conducted speech
,”
Proc. Hum. Fact. Ergon. Soc. (HFES2009)
53
,
1086
1090
.
27.
Studebaker
,
G. A.
(
1985
). “
A ‘rationalized’ arcsine transform
,”
J. Speech Hear. Res.
28
,
455
462
.
28.
Surprenant
,
A. M.
, and
Watson
,
C. S.
(
2001
). “
Individual differences in the processing of speech and nonspeech sounds by normal-hearing listeners
,”
J. Acoust. Soc. Am.
110
,
2085
2095
.
29.
Toll
,
L. E.
,
Emanuel
,
D. C.
, and
Letowski
,
T.
(
2011
). “
Effect of static force on bone conduction hearing thresholds and comfort
,”
Int. J. Audiol.
50
,
632
635
.
30.
Tran
,
P.
,
Letowski
,
T.
, and
McBride
,
M.
(
2008
). “
Bone conduction microphone: Head sensitivity mapping for speech intelligibility and sound quality
,” in
International Conference on Audio, Language and Image Processing (ICALIP 2008)
(Shanghai, China), pp.
107
111
.
31.
Tran
,
P. K.
,
Letowski
,
T. R.
, and
McBride
,
M. E.
(
2013
). “
The effect of bone conduction microphone placement on intensity and spectrum of transmitted speech items
,”
J. Acoust. Soc. Am.
133
,
3900
3908
.
You do not currently have access to this content.