Acoustic atmospheric tomography calculates temperature and wind velocity fields in a slice or volume of atmosphere based on travel time estimates between strategically located sources and receivers. The technique discussed in this paper uses the natural acoustic signature of an unmanned aerial vehicle as it overflies an array of microphones on the ground. The sound emitted by the aircraft is recorded on-board and by the ground microphones. The group velocities of the intersecting sound rays are then derived by comparing these measurements. Tomographic inversion is used to estimate the temperature and wind fields from the group velocity measurements. This paper describes a technique for deriving travel time (and hence group velocity) with an accuracy of 0.1% using these assets. This is shown to be sufficient to obtain highly plausible tomographic inversion results that correlate well with independent SODAR measurements.

1.
Arnold
,
K.
,
Ziemann
,
A.
, and
Raabe
,
A.
(
1999
). “
Acoustic tomography inside the atmospheric boundary layer
,”
Phys. Chem. Earth Part B
24
(
1
),
133
137
.
2.
Arnold
,
K.
,
Ziemann
,
A.
, and
Raabe
,
A.
(
2001
). “
Tomographic monitoring of wind and temperature at different heights above the ground
,”
IEEE Trans. Comput.
87
(
6
),
703
708
.
3.
Arnold
,
K.
,
Ziemann
,
A.
,
Raabe
,
A.
, and
Spindler
,
G.
(
2004
). “
Acoustic tomography and conventional meteorological measurements over heterogeneous surfaces
,”
Meteorol. Atmos. Phys.
85
(
1–3
),
175
186
.
4.
Barth
,
M.
, and
Raabe
,
A.
(
2001
). “
Acoustic tomographic imaging of temperature and flow fields in air
,”
Meas. Sci. Technol.
22
(
3
),
1
13
.
5.
Barth
,
M.
,
Raabe
,
A.
,
Arnold
,
K.
,
Resagk
,
C.
, and
Du Puits
,
R.
(
2007
). “
Flow field detection using acoustic travel time tomography
,”
Meteorol. Z.
16
(
4
),
443
450
.
6.
Castanié
,
F.
(
2013
).
Digital Spectral Analysis: Parametric, Non-parametric and Advanced Methods
(
John Wiley and Sons
,
New York
), pp.
64
65
.
7.
Finn
,
A.
, and
Rogers
,
K.
(
2015
). “
The feasibility of unmanned aerial vehicle-based acoustic atmospheric tomography
,”
J. Acoust. Soc. Am.
138
(
2
),
874
889
.
8.
Finn
,
A.
, and
Rogers
,
K.
(
2016
). “
Improving unmanned aerial vehicle-based acoustic atmospheric tomography by varying the engine firing rate of the aircraft
,”
J. Atmos. Oceanic Technol.
33
(
4
),
803
816
.
10.
Ostashev
,
V. E.
,
Bedard
,
A.
, and
Voronovich
,
A.
(
2002
). “
Array for acoustic tomography of the atmosphere
,”
IOP Conf. Ser.: Earth Environ. Sci.
2
,
862
864
.
9.
Ostashev
,
V. E.
,
Vecherin
,
S. N.
,
Wilson
,
D. K.
,
Ziemann
,
A.
, and
Goedecke
,
G. H.
(
2008
). “
Recent progress in acoustic tomography of the atmosphere
,”
IOP Conf. Ser.: Earth Environ. Sci.
1
(
1
),
012008
.
11.
Ostashev
,
V. E.
, and
Wilson
,
D. K.
(
2015
).
Acoustics in Moving Inhomogeneous Media
, 2nd ed. (
CRC Press
,
New York
),
181
pp.
12.
Rogers
,
K. J.
, and
Finn
,
A.
(
2014
). “
3D acoustic atmospheric tomography
,” in
SPIE Remote Sensing
(
International Society for Optics and Photonics
,
Bellingham, WA
),
9
pp.
13.
Rogers
,
K. J.
, and
Finn
,
A.
(
2013a
). “
Three-dimensional UAV-based atmospheric tomography
,”
J. Atmos. Oceanic Technol.
30
(
2
),
336
344
.
14.
Rogers
,
K. J.
, and
Finn
,
A.
(
2013b
). “
3D UAV-based atmospheric tomography: Preliminary trials results
,” in
Proceedings of the Australian Acoustical Society Conference
, Victor Harbour, Australia, pp.
390
395
.
15.
Rogers
,
K. J.
, and
Finn
,
A.
(
2013c
). “
Frequency estimation for 3D atmospheric tomography using unmanned aerial vehicles
,” in
2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing
, pp.
390
395
.
16.
Rogers
,
K. J.
,
Rice
,
F.
, and
Finn
,
A.
(
2015
). “
UAV-based atmospheric tomography using large eddy simulation data
,” in
2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing
.
You do not currently have access to this content.