A computational aeroacoustics prediction tool based on the application of Lighthill's theory is presented to compute noise from subsonic turbulent jets. The sources of sound are modeled by expressing Lighthill's source term as two-point correlations of the velocity fluctuations and the sound refraction effects are taken into account by a ray tracing methodology. Both the source and refraction models use the flow information collected from a solution of the Reynolds Averaged Navier-Stokes equations with a standard k-epsilon turbulence model. By adopting the ray tracing method to compute the refraction effects a high-frequency approximation is implied, while no assumption about the mean flow is needed, enabling the application of the method to jet noise problems with inherently three-dimensional propagation effects. Predictions show good agreement with narrowband measurements for the overall sound pressure levels and spectrum shape in polar angles between 60° and 110° for isothermal and hot jets with acoustic Mach number ranging from 0.5 to 1.0. The method presented herein can be applied as a relatively low cost and robust engineering tool for industrial optimization purposes.

1.
D.
Papamoschou
and
M.
Debiasi
, “
Directional suppression of noise from a high-speed jet
,”
AIAA J.
39
(
3
),
380
387
(
2001
).
2.
J.
Bridges
and
C. A.
Brown
, “
Parametric testing of chevrons on single flow hot jets
,” in
Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference
, AIAA Paper No. 2004–2824 (
2004
).
3.
D.
Papamoschou
, “
New method for jet noise reduction in turbofan engines
,”
AIAA J.
42
(
11
),
2245
2253
(
2004
).
4.
K.
Viswanathan
,
M.
Shur
,
M.
Strelets
, and
P. R.
Spalart
, “
Numerical prediction of noise from round and beveled nozzles
,” in
Proceedings of the EUROMECH Colloquium 467: Turbulent Flow and Noise Generation
(
2005
).
5.
ESDU International plc
, “ESDU 98019 and software B9819: Computer-based estimation procedure for single-stream jet noise” (
1998
).
6.
J. B.
Freund
, “
Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9
,”
J. Fluid Mech.
438
,
277
305
(
2001
).
7.
C.
Bogey
,
S.
Barré
,
D.
Juvé
, and
C.
Bailly
, “
Simulation of a hot coaxial jet: Direct noise prediction and flow-acoustics correlations
,”
Phys. Fluids
21
(
3
),
035105
(
2009
).
8.
H.
Xia
,
P. G.
Tucker
, and
S.
Eastwood
, “
Large-eddy simulations of chevron jet flows with noise predictions
,”
Int. J. Heat Fluid Fl.
30
(
6
),
1067
1079
(
2009
).
9.
T. F.
Balsa
and
P. R.
Gliebe
, “
Aerodynamics and noise of coaxial jets
,”
AIAA J.
15
(
11
),
1550
1558
(
1977
).
10.
T. F.
Balsa
,
P. R.
Gliebe
,
R. A.
Kantola
,
R.
Mani
,
E. J.
Stringas
, and
J. C. F.
Wang
, “
High velocity jet noise source location and reduction. Task 2: Theoretical developments and basic experiments
,”
Technical Report FAA-RD-76-II
, Federal Aviation Administration (
1978
).
11.
G. M.
Lilley
, “
The generation and radiation of supersonic jet noise. Vol. IV—Theory of turbulent generated jet noise, noise radiation from upstream sources, and combustion noise. Part, I. I. Generation of sound in a mixing region
,”
Technical report
, Air Force Propulsion Laboratory (
1972
).
12.
A.
Khavaran
,
E. A.
Krejsa
, and
C. M.
Kim
, “
Computation of supersonic jet mixing noise for an axisymmetric cd nozzle using k-epsilon turbulence model
,” in
Proceedings of the 30th Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 92-0500 (
1992
).
13.
A.
Khavaran
, “
Role of anisotropy in turbulent mixing noise
,”
AIAA J.
37
(
7
),
832
841
(
1999
).
14.
C. K. W.
Tam
and
L.
Auriault
, “
Jet mixing noise from fine-scale turbulence
,”
AIAA J.
37
(
2
),
145
153
(
1999
).
15.
P. J.
Morris
and
F.
Farassat
, “
Acoustic analogy and alternative theories for jet noise prediction
,”
AIAA J.
40
(
4
),
671
680
(
2002
).
16.
R. H.
Self
, “
Jet noise prediction using the Lighthill acoustic analogy
,”
J. Sound Vib.
275
(
3–5
),
757
768
(
2004
).
17.
M.
Harper-Bourne
, “
Jet near–field noise prediction
,” in
Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference and Exhibit
, AIAA Paper No. 99-27825 (
1999
).
18.
R. H.
Self
and
M.
Azarpeyvand
, “
Utilization of turbulent energy transfer rate time-scale in aeroacoustics with application to heated jets
,”
Int. J. Aeroacoust.
7
(
2
),
83
102
(
2008
).
19.
R. H.
Self
and
M.
Azarpeyvand
, “
Jet noise prediction using different turbulent scales
,”
Acoust. Phys.
55
(
3
),
433
440
(
2009
).
20.
M.
Azarpeyvand
and
R. H.
Self
, “
Improved jet noise modeling using a new time-scale
,”
J. Acoust. Soc. Am.
126
(
3
),
1015
1025
(
2009
).
21.
S. M.
Candel
, “
Numerical solution of conservation equations arising in linear wave theory: Application to aeroacoustics
,”
J. Fluid Mech.
83
(
3
),
465
493
(
1977
).
22.
J. B.
Freund
and
T. G.
Fleischman
, “
Ray traces through unsteady jet turbulence
,”
Int. J. Aeroacoust.
1
(
1
),
83
96
(
2002
).
23.
P. R.
Spalart
,
M. L.
Shur
, and
M. Kh.
Strelets
, “
Identification of sound sources in large-eddy simulations of jets
,” in
Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference
, AIAA Paper No. 2007-3616 (
2007
).
24.
X.
Xu
,
J.
He
,
X.
Li
, and
F. Q.
Hu
, “
3-D jet noise prediction for separate flow nozzles with pylon interaction
,” in
Proceedings of the 53rd AIAA Aerospace Sciences Meeting
, AIAA Paper No. AIAA 2015-0512 (
2015
).
25.
M. J.
Lighthill
, “
On sound generated aerodynamically. I. General theory
,”
Proc. R. Soc. A
211
,
564
587
(
1952
).
26.
H. S.
Ribner
, “
Quadrupole correlations governing the pattern of jet noise
,”
J. Fluid Mech.
38
(
1
),
1
24
(
1969
).
27.
G. K.
Batchelor
,
The Theory of Homogeneous Turbulence
(
Cambridge University Press
,
Cambridge
,
1953
).
28.
C.
Bailly
,
W.
Béchara
, and
P.
Lafon
, “
Jet noise prediction using a k-epsilon turbulence model
,” in
Proceedings of the 15th AIAA Aeroacoustics Conference
, AIAA Paper No. 93-4412 (
1993
).
29.
P. A.
Lush
, “
Measurements of subsonic jet noise and comparison with theory
,”
J. Fluid Mech.
46
(
3
),
477
500
(
1971
).
30.
A. D.
Pierce
,
Acoustics: An Introduction to its Physical Principles and Applications
(
McGraw-Hill
,
New York
,
1981
).
31.
D.
Blokhintzev
, “
The propagation of sound in an inhomogeneous and moving medium I
,”
J. Acoust. Soc. Am.
18
(
2
),
322
328
(
1946
).
32.
H.
Kenner
,
Geodesic Math and How to Use It
(
University of California Press
,
Oakland, CA
,
1976
).
33.
M. J.
Wenninger
,
Spherical Models
(
Cambridge University Press
,
Cambridge
,
1979
).
34.
S. Y.
Seidel
, “
Site-specific propagation prediction for wireless in-building personal communication system design
,”
IEEE Trans. Vehicular Technol.
43
(
4
),
879
891
(
1994
).
35.
ANSYS Inc.
, Canonsburg, PA, Product Documentation Release 14.0 (
2010
).
36.
C. K. W.
Tam
and
A.
Ganesan
, “
Modified k-epsilon turbulence model for calculating hot jet mean flows and noise
,”
AIAA J.
42
(
1
),
26
34
(
2004
).
37.
P. O.
Witze
, “
Centerline velocity decay of compressible free jets
,”
AIAA J.
12
(
4
),
417
418
(
1974
).
38.
P. J.
Morris
and
S.
Boluriaan
, “
The prediction of jet noise from CFD data
,” in
Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference
, AIAA Paper No. 2004-2977 (
2004
).
39.
M.
Omais
,
S.
Redonnet
,
B.
Caruelle
, and
E.
Manoha
, “
Jet noise prediction using RANS CFD input
,” in
Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference
, AIAA Paper No. 2008-2938 (
2008
).
40.
S. A.
Karabasov
,
M. Z.
Afsar
,
T. P.
Hynes
,
A. P.
Dowling
,
W. A.
McMullan
,
C. D.
Pokora
,
G. J.
Page
, and
J. J.
McGuirk
, “
Jet noise: Acoustic analogy informed by Large Eddy Simulation
,”
AIAA J.
48
(
7
),
1312
1325
(
2010
).
41.
N. K.
Depuru Mohan
,
A. P.
Dowling
,
S. A.
Karabasov
,
H.
Xia
,
O.
Graham
,
T. P.
Hynes
, and
P. G.
Tucker
, “
Acoustic sources and far-field noise of chevron and round jets
,”
AIAA J.
53
(
9
),
2421
2436
(
2015
).
42.
G. M.
Lilley
, “
The radiated noise from isotropic turbulence with applications to the theory of jet noise
,”
J. Sound Vib.
190
(
3
),
463
476
(
1996
).
You do not currently have access to this content.