The purpose of this research is to develop a visual demonstration of time reversal focusing of vibrations in a thin plate. Various plate materials are tested to provide optimal conditions for time reversal focusing. Specifically, the reverberation time in each plate and the vibration coupling efficiency from a shaker to the plate are quantified to illustrate why a given plate provides the best spatially confined focus as well as the highest focal amplitude possible. A single vibration speaker and a scanning laser Doppler vibrometer (SLDV) are used to provide the time reversal focusing. Table salt is sprinkled onto the plate surface to allow visualization of the high amplitude, spatially localized time reversal focus; the salt is thrown upward only at the focal position. Spatial mapping of the vibration focusing on the plate using the SLDV is correlated to the visual salt jumping demonstration. The time reversal focusing is also used to knock over an object when the object is placed at the focal position; some discussion of optimal objects to use for this demonstration are given.

1.
M.
Fink
, “
Time reversed acoustics
,”
Phys. Today
50
(
3
),
34
40
(
1997
).
2.
B. E.
Anderson
,
M.
Griffa
,
C.
Larmat
,
T. J.
Ulrich
, and
P. A.
Johnson
, “
Time reversal
,”
Acoust. Today
4
(
1
),
5
16
(
2008
).
3.
A.
Parvulescu
and
C.
Clay
, “
Reproducibility of signal transmission in the ocean
,”
Radio Electron Eng.
29
(
4
),
223
228
(
1965
).
4.
C.
He
,
Q.
Zhang
, and
J.
Huang
, “
Passive time reversal communication with cyclic shift keying over underwater acoustic channels
,”
Appl. Acoust.
96
(
9
),
132
138
(
2015
).
5.
G.
Zhang
,
J. M.
Hovem
,
D.
Hefeng
, and
L.
Liu
, “
Coherent underwater communication using passive time reversal over multipath channels
,”
Appl. Acoust.
72
(
7
),
412
419
(
2011
).
6.
M.
Fink
, “
Time-reversal acoustics in biomedical engineering
,”
Ann. Rev. Biomed. Eng.
5
(
1
),
465
497
(
2003
).
7.
M.
Fink
, “
Time reversal and phase conjugation with acoustic waves: Industrial and medical applications
,”
Lasers Electro-Opt.
3
,
2334
2335
(
2005
).
8.
S.
Dos Santos
and
Z.
Prevorovsky
, “
Imaging of human tooth using ultrasound based chirp-coded nonlinear time reversal acoustics
,”
Ultrason.
51
(
6
),
667
674
(
2011
).
9.
C.
Draeger
and
M.
Fink
, “
One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity
,”
Phys. Rev. Lett.
79
,
407
410
(
1997
).
10.
C.
Draeger
and
M.
Fink
, “
One-channel time-reversal in chaotic cavities: Theoretical limits
,”
J. Acoust. Soc. Am.
105
(
2
),
611
617
(
1999
).
11.
C.
Draeger
,
J.-C.
Aime
, and
M.
Fink
, “
One-channel time-reversal in chaotic cavities: Experimental results
,”
J. Acoust. Soc. Am.
105
(
2
),
618
625
(
1999
).
12.
A. M.
Sutin
,
J. A.
Ten Cate
, and
P. A.
Johnson
, “
Single-channel time reversal in elastic solids
,”
J. Acoust. Soc. Am.
116
(
5
),
2779
2784
(
2004
).
13.
C.
Prada
,
E.
Kerbrat
,
D.
Cassereau
, and
M.
Fink
, “
Time reversal techniques in ultrasonic nondestructive testing of scattering media
,”
Inv. Problems
18
(
6
),
1761
1773
(
2002
).
14.
T.
Goursolle
,
S.
Callé
,
S.
Dos Santos
, and
O.
BouMatar
, “
A two-dimensional pseudospectral model for time reversal and nonlinear elastic wave spectroscopy
,”
J. Acoust. Soc. Am.
122
(
6
),
3220
3229
(
2007
).
15.
B. E.
Anderson
,
M.
Griffa
,
T. J.
Ulrich
,
P.-Y.
Le Bas
,
R. A.
Guyer
, and
P. A.
Johnson
, “
Crack localization and characterization in solid media using time reversal techniques
,” in
44th US Rock Mechanics Symposium and 5th U.S.–Canada Rock Mechanics Symposium
, Salt Lake City, UT (June
2010
).
16.
B.
Van Damme
,
K.
Van Den Abeele
,
Y.
Li
, and
O.
BouMatar
, “
Time reversed acoustics techniques for elastic imaging in reverberant and nonreverberant media: An experimental study of the chaotic cavity transducer concept
,”
J. Appl. Phys.
109
(
10
),
104910
(
2011
).
17.
B.
Van Damme
,
K.
Van Den Abeele
, and
O.
BouMatar
, “
The vibration dipole: A time reversed acoustics scheme for the experimental localisation of surface breaking cracks
,”
Appl. Phys. Lett.
100
(
8
),
084103
(
2012
).
18.
H.-J.
Jeong
and
D.
Barnard
, “
Nonlinear time reversal focusing and detection of fatigue crack
,”
J. Korean Soc. Nondest. Test.
44
(
8
),
355
361
(
2012
).
19.
F.
Ciampa
and
M.
Meo
, “
Nonlinear elastic imaging using reciprocal time reversal and third order symmetry analysis
,”
J. Acoust. Soc. Am.
131
(
6
),
4316
4323
(
2012
).
20.
A. S.
Gliozzi
,
M.
Scalerandi
, and
P.
Antonaci
, “
One-channel time reversal acoustics in highly attenuating media
,”
J. Phys. D: Appl. Phys.
46
(
13
),
135502
(
2013
).
21.
J.
Zhu
,
Y.
Zhang
, and
X.
Liu
, “
Simulation of multi-cracks in solids using nonlinear elastic wave spectroscopy with a time-reversal process
,”
Wave Motion
51
(
1
),
146
156
(
2014
).
22.
P. Y.
Le Bas
,
M. C.
Remillieux
,
L.
Pieczonka
,
J. A.
Ten Cate
,
B. E.
Anderson
, and
T. J.
Ulrich
, “
Damage imaging in a laminated composite plate using an air-coupled time reversal mirror
,”
Appl. Phys. Lett.
107
(
18
),
184102
(
2015
).
23.
S.
Delrue
,
K.
Van Den Abeele
, and
O.
BouMatar
, “
Simulation study of a chaotic cavity transducer based virtual phased array used for focusing in the bulk of a solid material
,”
Ultrason.
67
,
151
159
(
2016
).
24.
E. L.
Villaverde
,
S.
Robert
, and
C.
Prada
, “
Ultrasonic imaging of defects in coarse-grained steels with the decomposition of the time reversal operator
,”
J. Acoust. Soc. Am.
140
(
1
),
541
550
(
2016
).
25.
M.
Lints
,
S.
Dos Santos
, and
A.
Salupere
, “
Solitary waves for non-destructive testing applications: Delayed nonlinear time reversal signal processing optimization
,”
Wave Motion
in press (
2016
).
26.
P.
Blanloeuil
,
L. R. F.
Rose
,
J. A.
Guinto
,
M.
Veidt
, and
C. H.
Wang
, “
Closed crack imaging using time reversal method based on fundamental and second harmonic scattering
,”
Wave Mot.
66
,
156
176
(
2016
).
27.
B. E.
Anderson
,
T. J.
Ulrich
,
P.-Y.
Le Bas
, and
J. A.
Ten Cate
, “
Three dimensional time reversal communications in elastic media
,”
J. Acoust. Soc. Am.
139
(
2
),
EL25
EL30
(
2016
).
28.
C. S.
Larmat
,
R. A.
Guyer
, and
P. A.
Johnson
, “
Time-reversal methods in geophysics
,”
Phys. Today
63
(
8
),
31
35
(
2010
).
29.
C. S.
Larmat
,
R. A.
Guyer
, and
P. A.
Johnson
, “
Tremor source location using time-reversal: Selecting appropriate imaging field
,”
Geophys. Res. Lett.
36
(
22
),
L22304
, doi: (
2009
).
30.
T. J.
Ulrich
,
B. E.
Anderson
,
P.-Y.
Le Bas
,
C.
Payan
,
J.
Douma
, and
R.
Snieder
, “
Improving time reversal focusing through deconvolution: 20 questions
,”
Proc. Meet. Acoust.
16
,
045015
(
2012
).
31.
B. E.
Anderson
,
T. J.
Ulrich
, and
P.-Y.
Le Bas
, “
Imaging crack orientation using the time reversed elastic nonlinearity diagnostic with three component time reversal
,”
Proc. Meet. Acoust.
19
,
065069
(
2013
).
32.
A.
Derode
,
A.
Tourin
, and
M.
Fink
, “
Ultrasonic pulse compression with one-bit time reversal through multiple scattering
,”
J. Appl. Phys.
85
(
9
),
6343
6352
(
1999
).
33.
T.
Neilsen
,
W. J.
Strong
,
K. L.
Gee
,
B. E.
Anderson
,
S. D.
Sommerfeldt
, and
T. W.
Leishman
, “
Creating an active-learning environment in an introductory acoustics course
,”
J. Acoust. Soc. Am.
131
(
3
),
2500
2509
(
2012
).
34.
H. J.
van Gerner
,
K.
van der Weele
,
M. A.
van der Hoef
, and
D.
van der Meer
, “
Air-induced inverse Chladni patterns
,”
J. Fluid Mech.
689
,
203
220
(
2011
).
35.
T. D.
Rossing
, “
Chladni's law for vibrating plates
,”
Am. J. Phys.
50
,
271
274
(
2010
).
36.
P. S.
Kovitz
and
F. M.
Becker
, “
Time delay spectrometry and maximum-length sequence measurements: A comparison in practical applications
,” in
95th Convention of the Audio Engineering Society
, Preprint 3702, New York (
1993
).
37.
S.
Muller
and
P.
Massarani
, “
Transfer-function measurement with sweeps
,”
J. Audio Eng. Soc.
49
(
6
),
443
471
(
2001
), available at http://www.aes.org/e-lib/browse.cfm?elib=18530.
38.
ISO 3382:1997(E)
,
Acoustics—Measurement of the Reverberation Time of Rooms with Reference to other Acoustical Parameters
(
International Organization for Standardization
,
Geneva, Switzerland
,
1997
).
39.
C. F.
Eyring
, “
Reverberation time in ‘dead’ rooms
,”
J. Acoust. Soc. Am.
1
,
217
241
(
1930
).
40.
M.
Tanter
,
J.-L.
Thomas
, and
M.
Fink
, “
Time reversal and the inverse filter
,”
J. Acoust. Soc. Am.
108
,
223
234
(
2000
).
41.
M.
Tanter
,
J. F.
Aubry
,
J.
Gerber
,
J.-L.
Thomas
, and
M.
Fink
, “
Optimal focusing by spatiotemporal filter. I. Basic principles
,”
J. Acoust. Soc. Am.
110
,
37
47
(
2001
).
42.
T.
Gallot
,
S.
Catheline
,
P.
Roux
, and
M.
Campillo
, “
A passive inverse filter for Green's function retrieval
,”
J. Acoust. Soc. Am.
131
,
EL21
EL27
(
2011
).
43.
B. E.
Anderson
,
J.
Douma
,
T. J.
Ulrich
, and
R.
Snieder
, “
Improving spatio-temporal focusing and source reconstruction through deconvolution
,”
Wave Motion
52
,
151
159
(
2015
).
You do not currently have access to this content.