Ultrasonic evaluation of coarse-grain materials generates multiple scattering at high frequency and large depth. Recent academic experiments with array probes showed the ability of a random matrix method [multiple scattering filter (MSF)] to reduce multiple scattering, hence improving detection. Here, MSF is applied to an industrial nickel-based alloy with coarse-grain structure. Two samples with average grain sizes 90 ± 60 μm and 750 ± 400 μm are inspected with wide-band 64-element arrays at central frequencies 2, 3, and 5 MHz. They contain cylindrical through-holes (1-mm radius) at various depths. The array transfer matrix is recorded and post-processed both in the flawless area and for eleven positions above each defect, which allows for a statistical analysis. MSF is compared with two conventional imaging techniques: the total focusing method (TFM) and the decomposition of the time-reversal operator (DORT). Several parameters to assess the performance of detection techniques are proposed and discussed. The results show the benefit of MSF, especially at high frequencies and for deep defects: at 5 MHz and 70 mm depth, i.e., more than three scattering mean-free paths, the detection rate for MSF ranges between 55% and 100% while it is found to be 0% both for TFM and DORT.

1.
I.
Yalda
,
F. J.
Margetan
, and
R. B.
Thompson
, “
Predicting ultrasonic grain noise in polycrystals: A Monte Carlo model
,”
J. Acoust. Soc. Am.
99
,
3445
3455
(
1996
).
2.
G.
Ghoshal
and
J. A.
Turner
, “
Numerical model of longitudinal wave scattering in polycrystals
,”
IEEE Trans. Ultrason. Ferroelectr. Frequency Control
56
(
7
),
1419
1428
(
2009
).
3.
I. N.
Ermolov
and
B. P.
Pilin
, “
Ultrasonic inspection of materials with coarse grain anisotropic structures
,”
NDT Int.
9
(
6
),
275
280
(
1976
).
4.
V. L.
Newhouse
,
N. M.
Bilgutay
,
J.
Saniie
, and
E. S.
Furgason
, “
Flaw-to-grain echo enhancement by split-spectrum processing
,”
Ultrasonics
20
(
2
),
59
68
(
1982
).
5.
L.
Ericsson
and
T.
Stepinski
, “
Cut spectrum processing: A novel signal processing algorithm for ultrasonic flaw detection
,”
NDT&E Int.
25
(
2
),
59
64
(
1992
).
6.
L.
Yue
and
Y.
Chong-Fu
, “
Two signal processing techniques for the enhancement of the flaw-to-grain echo ratio
,”
Ultrasonics
25
(
2
),
90
94
(
1987
).
7.
A.
Abbate
,
J.
Koay
,
J.
Frankel
,
S. C.
Schroeder
, and
P.
Das
, “
Signal detection and noise suppression using a wavelet transform signal processor: Application to ultrasonic flaw detection
,”
IEEE Trans. Ultrason. Ferroelectr. Frequency Control
44
(
1
),
14
26
(
1997
).
8.
Y.
Chen
,
Y.
Shi
, and
Y.
Lei
, “
Use of a wavelet analysis technique for the enhancement of signal-to-noise ratio in ultrasonic NDE
,”
Insight
38
(
11
),
800
803
(
1996
).
9.
V.
Matz
,
R.
Smid
,
S.
Starman
, and
M.
Kreidl
, “
Signal-to-noise ratio enhancement based on wavelet filtering in ultrasonic testing
,”
Ultrasonics
49
(
8
),
752
759
(
2009
).
10.
E.
Pardo
,
J.
San Emeterio
,
M.
Rodriguez
, and
A.
Ramos
, “
Noise reduction in ultrasonic NDT using undecimated wavelet transforms
,”
Ultrasonics
44
,
1063
1067
(
2006
).
11.
S.
Song
and
P.
Que
, “
Wavelet based noise suppression technique and its application to ultrasonic flaw detection
,”
Ultrasonics
44
(
2
),
188
193
(
2006
).
12.
R.
Bohlouli
,
B.
Rostami
, and
J.
Keighobadi
, “
Application of neuro-wavelet algorithm in ultrasonic-phased array nondestructive testing of polyethylene pipelines
,”
J. Control Sci. Eng.
2012
,
389690
(
2012
).
13.
P.
Crowther
, “
Practical experience of phased array technology for power station applications
,”
Insight
46
(
9
),
525
528
(
2004
).
14.
C.
Li
,
D.
Pain
,
P. D.
Wilcox
, and
B. W.
Drinkwater
, “
Imaging composite material using ultrasonic arrays
,”
NDT&E Int.
53
,
8
17
(
2013
).
15.
S.
Mahaut
,
J. L.
Godefroit
,
O.
Roy
, and
G.
Cattiaux
, “
Application of phased array techniques to coarse grain components inspection
,”
Ultrasonics
42
(
1–9
),
791
796
(
2004
).
16.
S.-J.
Song
,
H. J.
Shin
, and
Y. H.
Jang
, “
Development of an ultra sonic phased array system for nondestructive tests of nuclear power plant components
,”
Nucl. Eng. Des.
214
(
1
),
151
161
(
2002
).
17.
P. D.
Wilcox
, “
Array imaging of noisy materials
,”
AIP Conf. Proc
1335
,
890
897
(
2011
).
18.
S.
Yang
,
B.
Yoon
, and
Y.
Kim
, “
Using phased array ultrasonic technique for the inspection of straddle mount-type low-pressure turbine disc
,”
NDT&E Int.
42
(
2
),
128
132
(
2009
).
19.
C.
Holmes
,
B. W.
Drinkwater
, and
P. D.
Wilcox
, “
Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation
,”
NDT&E Int.
38
(
8
),
701
711
(
2005
).
20.
E.
Kerbrat
,
C.
Prada
,
D.
Cassereau
, and
M.
Fink
, “
Ultrasonic nondestructive testing of scattering media using the decomposition of the time-reversal operator
,”
IEEE Trans. Ultrason. Ferroelectr. Frequency Control
49
(
8
),
1103
1113
(
2002
).
21.
E.
Kerbrat
,
C.
Prada
,
D.
Cassereau
, and
M.
Fink
, “
Imaging in the presence of grain noise using the decomposition of the time reversal operator
,”
J. Acoust. Soc. Am.
113
,
1230
1240
(
2003
).
22.
C.
Prada
and
M.
Fink
, “
Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media
,”
Wave Motion
20
(
2
),
151
163
(
1994
).
23.
L. J.
Cunningham
,
A. J.
Mulholland
,
K. M.
Tant
,
A.
Gachagan
,
G.
Harvey
, and
C.
Bird
, “
The detection of flaws in austenitic welds using the decomposition of the time-reversal operator
,”
Proc. R. Soc. A
472
(
2188
),
20150500
(
2016
).
24.
A.
Aubry
and
A.
Derode
, “
Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration
,”
J. Appl. Phys.
106
(
4
),
044903
(
2009
).
25.
A.
Aubry
,
L. A.
Cobus
,
S. E.
Skipetrov
,
B. A.
van Tiggelen
,
A.
Derode
, and
J. H.
Page
, “
Recurrent scattering and memory effect at the Anderson localization transition
,”
Phys. Rev. Lett.
112
(
4
),
043903
(
2014
).
26.
S.
Feng
,
C.
Kane
,
P. A.
Lee
, and
A. D.
Stone
, “
Correlations and fluctuations of coherent wave transmission through disordered media
,”
Phys. Rev. Lett.
61
(
7
),
834
837
(
1988
).
27.
I.
Freund
,
M.
Rosenbluh
, and
S.
Feng
, “
Memory effects in propagation of optical waves through disordered media
,”
Phys. Rev. Lett.
61
(
20
),
2328
2331
(
1988
).
28.
S.
Shahjahan
,
A.
Aubry
,
F.
Rupin
,
B.
Chassignole
, and
A.
Derode
, “
A random matrix approach to detect defects in a strongly scattering polycrystal: How the memory effect can help overcome multiple scattering
,”
Appl. Phys. Lett.
104
(
23
),
234105
(
2014
).
29.
M.
Fink
,
D.
Cassereau
,
A.
Derode
,
C.
Prada
,
P.
Roux
,
M.
Tanter
,
J. L.
Thomas
, and
F.
Wu
, “
Time-reversed acoustics
,”
Rep. Prog. Phys.
63
,
1933
1995
(
2000
).
30.
C.
Prada
,
S.
Manneville
,
D.
Spoliansky
, and
M.
Fink
, “
Decomposition of the time reversal operator: Detection and selective focusing on two scatterers
,”
J. Acoust. Soc. Am.
99
,
2067
2076
(
1996
).
31.
V. A.
Marčenko
and
L. A.
Pastur
, “
Distribution of eigenvalues for some sets of random matrices
,”
Math. USSR
1
,
457
483
(
1967
).
32.
M.
Mehta
, “
A note on correlations between eigenvalues of a random matrix
,”
Commun. Math. Phys.
20
(
3
),
245
250
(
1971
).
33.
J.
Shen
, “
On the singular values of Gaussian random matrices
,”
Linear Algebra Appl.
326
(
1-3
),
1
14
(
2001
).
34.
U.
Frisch
, “
Wave propagation in random media
,” in
Probabilistic Methods in Applied Mathematics
, edited by
A. T.
Bharucha-Reid
(
Academic Press
,
New York
,
1968
), Vol.
1
, pp.
76
198
.
35.
F. E.
Stanke
and
G. S.
Kino
, “
A unified theory for elastic wave propagation in polycrystalline materials
,”
J. Acoust. Soc. Am.
75
,
665
681
(
1984
).
36.
J. A.
Turner
, “
Elastic wave propagation and scattering in heterogeneous, anisotropic media: Textured polycrystalline materials
,”
J. Acoust. Soc. Am.
106
,
541
552
(
1999
).
37.
R L.
Weaver
, “
Diffusivity of ultrasound in polycrystals
,”
J. Mech. Phys. Solids
38
(
1
),
55
86
(
1990
).
38.
T.
Holden
,
R.
Holt
, and
A.
Clarke
, “
Intergranular strains in Inconel-600 and the impact on interpreting stress fields in bent steam-generator tubing
,”
Mater. Sci. Eng. A
246
(
1
),
180
198
(
1998
).
39.
S.
Shahjahan
,
F.
Rupin
,
A.
Aubry
,
B.
Chassignole
,
T.
Fouquet
, and
A.
Derode
, “
Comparison between experimental and 2-D numerical studies of multiple scattering in Inconel600® by means of array probes
,”
Ultrasonics
54
(
1
),
358
367
(
2014
).
40.
B.
Angelsen
,
Ultrasound Imaging. Waves, Signals and Signal Processing
(
Emantec AS, Trondheim
,
Norway
,
2000
).
41.
A.
Van Pamel
,
C. R.
Brett
, and
M. J.
Lowe
, “
A methodology for evaluating detection performance of ultrasonic array imaging algorithms for coarse-grained materials
,”
IEEE Trans. Ultrason. Ferroelectr. Frequency Control
61
(
12
),
2042
2053
(
2014
).
42.
G.
Bayer
and
T.
Niederdränk
, “
Weak localization of acoustic waves in strongly scattering media
,”
Phys. Rev. Lett.
70
(
25
),
3884
3887
(
1993
).
43.
M. P. V.
Albada
and
A.
Lagendijk
, “
Observation of weak localization of light in a random medium
,”
Phys. Rev. Lett.
55
(
24
),
2692
2695
(
1985
).
44.
E.
Akkermans
,
P.
Wolf
, and
R.
Maynard
, “
Coherent backscattering of light by disordered media: Analysis of the peak line shape
,”
Phys. Rev. Lett.
56
(
14
),
1471
1474
(
1986
).
45.
A.
Derode
,
V.
Mamou
,
F.
Padilla
,
F.
Jenson
, and
P.
Laugier
, “
Dynamic coherent backscattering in a heterogeneous absorbing medium: Application to human trabecular bone characterization
,”
Appl. Phys. Lett.
87
,
114101
(
2005
).
46.
K.
Sakai
,
K.
Yamamoto
, and
K.
Takagi
, “
Observation of acoustic coherent backscattering
,”
Phys. Rev. B
56
(
17
),
10930
10933
(
1997
).
47.
R. F.
Wagner
,
S. W.
Smith
,
J. M.
Sandrik
, and
H.
Lopez
, “
Statistics of speckle in ultrasound B-Scans
,”
IEEE Trans. Sonics Ultrason.
30
(
3
),
156
163
(
1983
).
48.
M. L.
Mehta
,
Random Matrices
(
Academic Press
,
San Diego, CA
,
2004
).
49.
A.
Aubry
and
A.
Derode
, “
Singular value distribution of the propagation matrix in random scattering media
,”
Wave Random Complex
20
(
3
),
333
363
(
2010
).
You do not currently have access to this content.