To bypass challenges of digital signal processing for acoustic beamforming applications, it is desirable to investigate repeatable mechanical approaches that accurately reposition transducers for real-time, simple guiding of acoustic energy. One promising approach is to create arrays configured on origami-inspired tessellated architectures. The low dimensionality, easy implementation, compactness, and use of straightforward folding to guide acoustic energies suggest that tessellated arrays may bypass limitations of conventional digital signal processing for beamforming. On the other hand, the challenge of developing such reconfigurable arrays lies in determining tessellation design and folding extent that direct sound as required. This research assesses the utility of the computationally efficient, approximate solutions to Rayleigh's integral to predict radiated sound fields from tessellated arrays based on Miura-ori fold patterns. Despite altering assumptions upon which the integral is derived, it is found that the salient beam-steering properties and amplitudes are accurately reconstructed by the analytical approach, when compared to boundary element model results. Within the far field angular space accommodated by the formulation assumptions, the analytical approach provides a powerful, time-efficient, and intuitive means to identify tessellated topologies and folding extents that empower desired wave-guiding functionalities, giving fuel to the concept of acoustic beamfolding.

1.
C. H.
Sherman
and
J. L.
Butler
,
Transducers and Arrays for Underwater Sound
(
Springer
,
New York
,
2007
).
2.
D. H.
Turnbull
and
F. S.
Foster
, “
Beam steering with pulsed two-dimensional transducer arrays
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
38
,
320
333
(
1991
).
3.
“Product Sheet: LRAD 100X” (LRAD Corporation, San Diego, CA,
2015
).
4.
C. E.
Graber
, “
Robotic sentry with low dispersion acoustic projector
,” U.S. patent 8,248,473,
2012
(August 21, 2012).
5.
F. M.
Fazi
, “
Sound field reproduction
,” Ph.D. dissertation,
Institute of Sound and Vibration Research
,
University of Southampton, Southampton, UK
,
2010
.
6.
W. A.
Veronesi
and
J. D.
Mayndard
, “
Digital holographic reconstruction of sources with arbitrarily shaped surfaces
,”
J. Acoust. Soc. Am.
85
,
588
598
(
1989
).
7.
J. D.
Maynard
,
E. G.
Williams
, and
Y.
Lee
, “
Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH
,”
J. Acoust. Soc. Am.
78
,
1395
1413
(
1985
).
8.
J.
Benesty
,
J.
Chen
, and
Y.
Huang
,
Microphone Array Signal Processing
(
Springer
,
Berlin
,
2008
).
9.
Y. T.
Cho
and
M. J.
Roan
, “
Adaptive near-field beamforming techniques for sound source imaging
,”
J. Acoust. Soc. Am.
125
,
944
957
(
2009
).
10.
L. C.
Parra
, “
Steerable frequency-invariant beamforming arbitrary arrays
,”
J. Acoust. Soc. Am.
119
,
3839
3847
(
2006
).
11.
J. G.
Ryan
and
R. A.
Goubran
, “
Array optimization applied in the near field of a microphone array
,”
IEEE Trans. Speech Audio Process.
8
,
173
176
(
2000
).
12.
D. H.
Johnson
and
D. E.
Dudgeon
,
Array Signal Processing: Concepts and Techniques
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1993
).
13.
J.
Benesty
and
J.
Chen
,
Study and Design of Differential Microphone Arrays
(
Springer
,
Berlin
,
2013
).
14.
D. W. E.
Schobben
,
Real-time Adaptive Concepts in Acoustics: Blind Signal Separation and Multichannel Echo Cancellation
(
Springer
,
Dordrecht
,
2001
).
15.
J. A.
Jensen
,
H.
Holten-Lund
,
R. T.
Nilsson
,
M.
Hansen
,
U. D.
Larsen
,
R. P.
Domsten
,
B. G.
Tomov
,
M. B.
Stuart
,
S. I.
Nikolov
,
M. J.
Pihl
,
Y.
Du
,
J. H.
Rasmussen
, and
M. F.
Rasmussen
, “
SARUS: A synthetic aperture real-time ultrasound system
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
,
1838
1852
(
2013
).
16.
X.
Liu
,
S.
Yao
,
S. V.
Georgakopoulos
,
B. S.
Cook
, and
M. M.
Tentzeris
, “
Reconfigurable helical antenna based on an origami structure for wireless communication system
,” in
Proceedings of the 2014 IEEE MTT-S International Microwave Symposium
(
2014
), pp.
1
4
.
17.
S.
Bildik
,
S.
Dieter
,
C.
Fritzsch
,
W.
Menzel
, and
R.
Jakoby
, “
Reconfigurable folded recflectarray antenna based upon liquid crystal technology
,”
IEEE Trans. Antennas Propag.
63
,
122
132
(
2015
).
18.
K.
Fuchi
,
A. R.
Diaz
,
E. J.
Rothwell
,
R. O.
Ouedraogo
, and
J.
Tang
, “
An origami tunable metamaterial
,”
J. Appl. Phys.
111
,
084905
(
2012
).
19.
K.
Fuchi
,
P. R.
Buskohl
,
G.
Bazzan
,
M. F.
Durstock
,
J. J.
Joo
,
G. W.
Reich
, and
R. A.
Vaia
, “
Spatial tuning of a RF frequency selective surface through origami
,”
Proc. SPIE
9844
,
98440W
(
2016
).
20.
The Karl G. Jansky Very Large Array, [available at https://science.nrao.edu/facilities/vla/ (Last viewed April 17,
2016
).
21.
P.
Wang-Iverson
,
R. J.
Lang
, and
M.
Yim
, eds.,
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
(
CRC Press
,
Boca Raton, FL
,
2011
).
22.
R. J.
Lang
, ed.,
Origami 4
(
Peters
,
Natick, MA
,
2009
).
23.
C. D.
Onal
,
M. T.
Tolley
,
R. J.
Wood
, and
D.
Rus
, “
Origami-inspired printed robots
,”
IEEE/ASME Trans. Mechatron.
20
,
2214
2221
(
2015
).
24.
E. A.
Peraza-Hernandez
,
D. J.
Hartl
,
R. J.
Malak
, Jr.
, and
D. C.
Lagoudas
, “
Origami-inspired active structures: A synthesis and review
,”
Smart Mater. Struct.
23
,
094001
(
2014
).
25.
K.
Wang
and
Y.
Chen
, “
Folding a patterned cylinder by rigid origami
,” in
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
, edited by
P.
Wang-Iverson
,
R. J.
Lang
, and
M.
Yim
(
CRC Press
,
Boca Raton, FL
,
2011
), pp.
265
276
.
26.
M.
Schenk
and
S. D.
Guest
, “
Geometry of Miura-folded metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
3276
3281
(
2013
).
27.
J. T. B.
Overvelde
,
T. A.
de Jong
,
Y.
Shevchenko
,
S. A.
Becerra
,
G. M.
Whitesides
,
J. C.
Weaver
,
C.
Hoberman
, and
K.
Bertoldi
, “
A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom
,”
Nat. Commun.
7
,
10929
(
2016
).
28.
S. A.
Zirbel
,
R. J.
Lang
,
M. W.
Thomson
,
D. A.
Sigel
,
P. E.
Walkemeyer
,
B. P.
Trease
,
S. P.
Magleby
, and
L. L.
Howell
, “
Accommodating thickness in origami-based deployable arrays
,”
J. Mech. Des.
135
,
111005
(
2013
).
29.
M.
Schenk
and
S. D.
Guest
, “
Origami folding: A structural engineering approach
,” in
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
, edited by
P.
Wang-Iverson
,
R. J.
Lang
, and
M.
Yim
(
CRC Press
,
Boca Raton
, FL,
2011
), pp.
291
304
.
30.
R. L.
Harne
and
D. T.
Lynd
, “
Origami acoustics: Using principles of folding structural acoustics for simple and large focusing of sound energy
,”
Smart Mater. Struct.
25
,
085031
(
2016
).
31.
K.
Miura
, “
Method of packaging and deployment of large membranes in space
,”
Report No. 618
, The Institute of Space and Astronautical Science (
1985
).
32.
S.
Liu
,
G.
Lu
,
Y.
Chen
, and
Y. W.
Leong
, “
Deformation of the Miura-ori patterned sheet
,”
Int. J. Mech. Sci.
99
,
130
142
(
2015
).
33.
J. W.
Strutt
,
The Theory of Sound
(
MacMillian
,
London
,
1894
).
34.
S. A.
Hambric
,
S. H.
Sung
, and
D. J.
Nefske
,
Engineering Vibroacoustic Analysis: Methods and Applications
(
Wiley
,
Chichester
,
2016
).
35.
M.
Postema
,
Fundamentals of Medical Ultrasonics
(
Spon
,
New York
,
2011
).
36.
D. T.
Blackstock
,
Fundamentals of Physical Acoustics
(
Wiley
,
New York
,
2000
).
37.
V. C.
Henriquez
and
P. M.
Juhl
, “
OpenBEM—An open source boundary element method software in acoustics
,” in
Proceedings of Internoise 2010
,
Lison, Portugal
(
2010
), pp.
1
10
.
38.
This contrasts with rotating or translating a beam-steered array, like classical antenna scanning in RADAR systems, which is occasionally also referred to as mechanical signal processing.
You do not currently have access to this content.