The characteristic time-dependent viscosity of the intergranular pore-fluid in Buckingham's grain-shearing (GS) model [Buckingham, J. Acoust. Soc. Am. 108, 2796–2815 (2000)] is identified as the property of rheopecty. The property corresponds to a rare type of a non-Newtonian fluid in rheology which has largely remained unexplored. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and the shear wave equation derived from the GS model are shown to take the form of the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation, respectively. Therefore, an analogy is drawn between the dispersion relations obtained from the fractional framework and those from the GS model to establish the equivalence of the respective wave equations. Further, a physical interpretation of the characteristic fractional order present in the wave equations is inferred from the GS model. The overall goal is to show that fractional calculus is not just a mathematical framework which can be used to curve-fit the complex behavior of materials. Rather, it can also be derived from real physical processes as illustrated in this work by the example of GS.

1.
M. J.
Buckingham
, “
Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments
,”
J. Acoust. Soc. Am.
108
,
2796
2815
(
2000
).
2.
M. J.
Buckingham
, “
Compressional and shear wave properties of marine sediments: Comparisons between theory and data
,”
J. Acoust. Soc. Am.
117
,
137
152
(
2005
).
3.
M. J.
Buckingham
, “
Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments
,”
J. Acoust. Soc. Am.
102
,
2579
2596
(
1997
).
4.
M. J.
Buckingham
, “
Theory of compressional and shear waves in fluidlike marine sediments
,”
J. Acoust. Soc. Am.
103
,
288
299
(
1998
).
5.
C.
Lomnitz
, “
Creep measurements in igneous rocks
,”
J. Geol.
64
,
473
479
(
1956
).
6.
Z.
Zhang
,
L.
Hou
,
X.
Chen
,
Y.
Zhou
,
M.
Liu
, and
W.
Zhou
, “
A rheological model to quantify strain of waxy crude oil loaded by linear increased stress
,”
J. Disper. Sci. Technol.
37
,
326
332
(
2016
).
7.
W. D.
Callister
, Jr.
and
D. G.
Rethwisch
,
Fundamentals of Materials Science and Engineering: An Integrated Approach
(
John Wiley & Sons
,
Hoboken, NJ
,
2012
), pp.
220
301
.
8.
J.
Mewis
and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
9.
A. P.
Deshpande
,
J. M.
Krishnan
, and
P. B. S.
Kumar
,
Rheology of Complex Fluids
(
Springer
,
New York
,
2010
), pp.
1
30
.
10.
J.
Yannas
and
R.
Gonzalez
, “
A clear instance of rheopectic flow
,”
Nature
191
,
1384
1385
(
1961
).
11.
R. J.
Dewar
and
M. J.
Joyce
, “
The thixotropic and rheopectic behaviour of maize starch and maltodextrin thickeners used in dysphagia therapy
,”
Carbohyd. Polym.
65
,
296
305
(
2006
).
12.
J.
Mewis
and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University Press
,
New York
,
2012
), pp.
228
253
.
13.
L.
Huang
and
M.
Petermann
, “
An experimental study on rheological behaviors of paraffin/water phase change emulsion
,”
Int. J. Heat Mass Transfer
83
,
479
486
(
2015
).
14.
H. W.
Zhou
,
C. P.
Wang
,
B. B.
Han
, and
Z. Q.
Duan
, “
A creep constitutive model for salt rock based on fractional derivatives
,”
Int. J. Rock. Mech. Min. Sci.
48
,
116
121
(
2011
).
15.
T. J.
Royston
,
Z.
Dai
,
R.
Chaunsali
,
Y.
Liu
,
Y.
Peng
, and
R. L.
Magin
, “
Estimating material viscoelastic properties based on surface wave measurements: A comparison of techniques and modeling assumptions
,”
J. Acoust. Soc. Am.
130
,
4126
4138
(
2011
).
16.
D.
Yin
,
W.
Zhang
,
C.
Cheng
, and
Y.
Li
, “
Fractional time-dependent Bingham model for muddy clay
,”
J. Non-Newtonian Fluid Mech.
187–188
,
32
35
(
2012
).
17.
T. A.
Nadzharyan
,
V. V.
Sorokin
,
G. V.
Stepanov
,
A. N.
Bogolyubov
, and
E. Yu.
Kramarenko
, “
A fractional calculus approach to modeling rheological behavior of soft magnetic elastomers
,”
Polymer
92
,
179
188
(
2016
).
18.
F.
Mainardi
,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
(
Imperial College Press
,
London
,
2010
), pp.
1
154
.
19.
S.
Holm
and
V.
Pandey
, “
Wave propagation in marine sediments expressed by fractional wave and diffusion equations
,” in
Proceedings of the IEEE China Ocean Acoustics Symposium (COA)
(
2016
).
20.
S. P.
Näsholm
and
S.
Holm
, “
Linking multiple relaxation, power-law attenuation, and fractional wave equations
,”
J. Acoust. Soc. Am.
130
,
3038
3045
(
2011
).
21.
M. J.
Buckingham
, “
On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments
,”
J. Acoust. Soc. Am.
122
,
1486
1501
(
2007
).
22.
M. J.
Buckingham
, “
Analysis of shear-wave attenuation in unconsolidated sands and glass beads
,”
J. Acoust. Soc. Am.
136
,
2478
2488
(
2014
).
23.
J. T.
Maestas
and
J. M.
Collis
, “
Nonlinear acoustic pulse propagation in dispersive sediments using fractional loss operators
,”
J. Acoust. Soc. Am.
139
,
1420
1429
(
2016
).
24.
V.
Pandey
and
S.
Holm
, “
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity
,”
Phys. Rev. E
94
,
032606
(
2016
).
25.
M.
Kohandel
,
S.
Sivaloganathan
,
G.
Tenti
, and
K.
Darvish
, “
Frequency dependence of complex moduli of brain tissue using a fractional Zener model
,”
Phys. Med. Biol.
50
,
2799
2805
(
2005
).
26.
M.
Zhang
,
B.
Castaneda
,
Z.
Wu
,
P.
Nigwekar
,
J. V.
Joseph
,
D. J.
Rubens
, and
K. J.
Parker
, “
Congruence of imaging estimators and mechanical measurements of viscoelastic properties of soft tissues
,”
Ultrasound Med. Biol.
33
,
1617
1631
(
2007
).
27.
L. M.
Petrovic
,
D. M.
Zorica
,
I. L.
Stojanac
,
V. S.
Krstonosic
,
M. S.
Hadnadjev
,
M. B.
Janev
,
M. T.
Premovic
, and
T. M.
Atanackovic
, “
Viscoelastic properties of uncured resin composites: Dynamic oscillatory shear test and fractional derivative model
,”
Dent. Mater.
31
,
1003
1009
(
2015
).
28.
M.
Fellah
,
Z. E. A.
Fellah
,
F. G.
Mitri
,
E.
Ogam
, and
C.
Depollier
, “
Transient ultrasound propagation in porous media using Biot theory and fractional calculus: Application to human cancellous bone
,”
J. Acoust. Soc. Am.
133
,
1867
1881
(
2013
).
29.
W.
Zhang
and
S.
Holm
, “
Estimation of shear modulus in media with power law characteristics
,”
Ultrasonics
64
,
170
176
(
2016
).
30.
J. M.
Carcione
,
F.
Cavallini
,
F.
Mainardi
, and
A.
Hanyga
, “
Time-domain modeling of constant-Q seismic waves using fractional derivatives
,”
Pure Appl. Geophys.
159
,
1719
1736
(
2002
).
31.
T.
Zhu
and
J. M.
Carcione
, “
Theory and modelling of constant-Q P- and S-waves using fractional spatial derivatives
,”
Geophys. J. Int.
196
,
1787
1795
(
2014
).
32.
B. C.
Blakey
and
D. F.
James
, “
Characterizing the rheology of laterite slurries
,”
Int. J. Miner. Process.
70
,
23
29
(
2003
).
33.
A.
Mujumdar
,
A. N.
Beris
, and
A. B.
Metzner
, “
Transient phenomena in thixotropic systems
,”
J. Non-Newtonian Fluid Mech.
102
,
157
178
(
2002
).
34.
I.
Podlubny
, “
Geometrical and physical interpretation of fractional integration and fractional differentiation
,”
Fract. Calc. Appl. Anal.
5
,
367
386
(
2002
).
35.
J. T.
Machado
,
F.
Mainardi
, and
V.
Kiryakova
, “
Fractional calculus: Quo vadimus? (Where are we going?)
,”
Fract. Calc. Appl. Anal.
18
,
495
526
(
2015
).
36.
D. R.
Jackson
and
M. D.
Richardson
,
High-Frequency Seafloor Acoustics
(
Springer
,
New York
,
2007
), pp.
278
283
.
37.
N. P.
Chotiros
and
M. J.
Isakson
, “
Shear wave attenuation and micro-fluidics in water-saturated sand and glass beads
,”
J. Acoust. Soc. Am.
135
,
3264
3279
(
2014
).
38.
Z.
Wang
,
P.
Larsen
, and
W.
Xiang
, “
Rheological properties of sediment suspensions and their implications
,”
J. Hydraul. Res.
32
,
495
516
(
1994
).
39.
J. H.
Dieterich
, “
Time-dependent friction and the mechanics of stick-slip
,”
Pure Appl. Geophys.
116
,
790
806
(
1978
).
40.
K.
Thøgersen
,
J. K.
Trømborg
,
H. A.
Sveinsson
,
A.
Malthe-Sørenssen
, and
J.
Scheibert
, “
History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework
,”
Phys. Rev. E
89
,
052401
(
2014
).
41.
N. P.
Chotiros
and
M. J.
Isakson
, “
A broadband model of sandy ocean sediments: Biot–Stoll with contact squirt flow and shear drag
,”
J. Acoust. Soc. Am.
116
,
2011
2022
(
2004
).
42.
N. P.
Chotiros
and
M. J.
Isakson
, “
Comments on ‘On pore fluid viscosity and the wave properties of saturated granular materials including marine sediments' [J. Acoust. Soc. Am. 122, 1486–1501 (2007)]
,”
J. Acoust. Soc. Am.
127
,
2095
2098
(
2010
).
43.
M. J.
Buckingham
, “
Response to ‘Comments on “Pore fluid viscosity and the wave properties of saturated granular materials including marine sediments [J. Acoust. Soc. Am. 127, 2095–2098 (2010)],” ’ 
J. Acoust. Soc. Am.
127
,
2099
2102
(
2010
).
44.
S.
Holm
and
S. P.
Näsholm
, “
Comparison of fractional wave equations for power law attenuation in ultrasound and elastography
,”
Ultrasound Med. Biol.
40
,
695
703
(
2014
).
45.
G. W. S.
Blair
and
M.
Reiner
, “
The rheological law underlying the Nutting equation
,”
Appl. Sci. Res.
2
,
225
234
(
1951
).
46.
R.
Metzler
and
T. F.
Nonnenmacher
, “
Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials
,”
Int. J. Plast.
19
,
941
959
(
2003
).
47.
G. W. S.
Blair
and
F. M. V.
Coppen
, “
The subjective conception of the firmness of soft materials
,”
Am. J. Psychol.
55
,
215
229
(
1942
).
48.
A.
Lion
, “
On the thermodynamics of fractional damping elements
,”
Continuum Mech. Thermodyn.
9
,
83
96
(
1997
).
49.
S.
Holm
and
R.
Sinkus
, “
A unifying fractional wave equation for compressional and shear waves
,”
J. Acoust. Soc. Am.
127
,
542
548
(
2010
).
50.
S.
Holm
and
S. P.
Näsholm
, “
A causal and fractional all-frequency wave equation for lossy media
,”
J. Acoust. Soc. Am.
130
,
2195
2202
(
2011
).
51.
S.
Holm
,
S. P.
Näsholm
,
F.
Prieur
, and
R.
Sinkus
, “
Deriving fractional acoustic wave equations from mechanical and thermal constitutive equations
,”
Comput. Math. Appl.
66
,
621
629
(
2013
).
52.
J. M.
Carcione
, “
Wave fields in real media: Wave propagation in anisotropic, anelastic and porous media
,” in
Handbook of Geophysical Exploration
, Vol.
31
(
Pergamon Press
,
Oxford
,
2001
), pp.
52
93
.
53.
L. J.
Ziomek
,
Fundamentals of Acoustic Field Theory and Space-time Signal Processing
(
CRC Press
,
Boca Raton
,
1994
), pp.
94
95
.
54.
M. J.
Buckingham
, “
Causality, Stokes' wave equation, and acoustic pulse propagation in a viscous fluid
,”
Phys. Rev. E
72
,
026610
(
2005
).
55.
S.
Holm
, “
Four ways to justify temporal memory operators in the lossy wave equation
,” in
IEEE Ultrasonics Symposium
,
Taipei
,
Taiwan
(October
2015
), pp.
1
4
.
56.
R. D.
Stoll
and
G. M.
Bryan
, “
Wave attenuation in saturated sediments
,”
J. Acoust. Soc. Am.
47
,
1440
1447
(
1970
).
57.
A.
Charpentier
and
M.
Durand
, “
Modeling earthquake dynamics
,”
J. Seismol.
19
,
721
739
(
2015
).
You do not currently have access to this content.