Shallow water acoustic channel estimation techniques are presented at the intersection of time, frequency, and sparsity. Specifically, a mathematical framework is introduced that translates the problem of channel estimation to non-uniform sparse channel recovery in two-dimensional frequency domain. This representation facilitates disambiguation of slowly varying channel components against high-energy transients, which occupy different frequency ranges and also exhibit significantly different sparsity along their local distribution. This useful feature is exploited to perform non-uniform sampling across different frequency ranges, with compressive sampling across higher Doppler frequencies and close to full-rate sampling at lower Doppler frequencies, to recover both slowly varying and rapidly fluctuating channel components at high precision. Extensive numerical experiments are performed to measure relative performance of the proposed channel estimation technique using non-uniform compressive sampling against traditional compressive sampling techniques as well as sparsity-constrained least squares across a range of observation window lengths, ambient noise levels, and sampling ratios. Numerical experiments are based on channel estimates from the SPACE08 experiment as well as on a recently developed channel simulator tested against several field trials.

1.
W.
Li
and
J. C.
Preisig
, “
Estimation of rapidly time-varying sparse channels
,”
IEEE J. Ocean. Eng.
32
(
4
),
927
939
(
2007
).
2.
E. V.
Zorita
and
M.
Stojanovic
, “
Space-frequency block coding for underwater acoustic communications
,”
IEEE J. Ocean. Eng.
40
(
2
),
303
314
(
2015
).
3.
A.
Radosevic
,
R.
Ahmed
,
T. M.
Duman
,
J. G.
Proakis
, and
M.
Stojanovic
, “
Adaptive OFDM modulation for underwater acoustic communications: Design considerations and experimental results
,”
IEEE J. Ocean. Eng.
39
(
2
),
357
370
(
2014
).
4.
P.
Qarabaqi
and
M.
Stojanovic
, “
Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels
,”
IEEE J. Ocean. Eng.
38
(
4
),
701
717
(
2013
).
5.
Y. M.
Aval
and
M.
Stojanovic
, “
Differentially coherent multichannel detection of acoustic OFDM signals
,”
IEEE J. Ocean. Eng.
40
(
2
),
251
268
(
2015
).
6.
B.
Li
,
S.
Zhou
,
M.
Stojanovic
,
L.
Freitag
, and
P.
Willett
, “
Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts
,”
IEEE J. Ocean. Eng.
33
(
2
),
198
209
(
2008
).
7.
E.
Calvo
and
M.
Stojanovic
, “
Efficient channel-estimation-based multiuser detection for underwater CDMA systems
,”
IEEE J. Ocean. Eng.
33
(
4
),
502
512
(
2008
).
8.
A.
Sen Gupta
and
J.
Preisig
, “
A geometric mixed norm approach to shallow water acoustic channel estimation and tracking
,”
Phys. Commun.
5
(
2
),
119
128
(
2012
).
9.
M.
Chitre
, “
A high-frequency warm shallow water acoustic communications channel model and measurements
,”
J. Acoust. Soc. Am.
122
(
5
),
2580
2586
(
2007
).
10.
P.
Bello
, “
Characterization of randomly time-variant linear channels
,”
IEEE Trans. Commun. Syst.
11
(
4
),
360
393
(
1963
).
11.
A.
Sen Gupta
, “
Time-frequency localization issues in the context of sparse process modeling
,”
Proc. Meet. Acoust.
19
,
070084
(
2013
).
12.
J. C.
Preisig
and
G. B.
Deane
, “
Surface wave focusing and acoustic communications in the surf zone
,”
J. Acoust. Soc. Am.
116
(
4
),
2067
2080
(
2004
).
13.
B.
Tomasi
,
J.
Preisig
,
G. B.
Deane
, and
M.
Zorzi
, “
A study on the wide-sense stationarity of the underwater acoustic channel for non-coherent communication systems
,” in
11th European Wireless Conference 2011-Sustainable Wireless Technologies (European Wireless)
,
Vienna, Austria
(
2011
), pp.
1
6
.
14.
A.
Sen Gupta
and
J.
Preisig
, “
Tracking the time-varying sparsity of channel coefficients in shallow water acoustic communications
,” in
IEEE 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)
(
2010
), pp.
1047
1049
.
15.
A.
Sen Gupta
and
J.
Preisig
, “
Adaptive sparse optimization for coherent and quasi-stationary problems using context-based constraints
,” in
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
2012
), pp.
3413
3416
.
16.
S. F.
Cotter
and
B. D.
Rao
, “
Sparse channel estimation via matching pursuit with application to equalization
,”
IEEE Trans. Commun.
50
(
3
),
374
377
(
2002
).
17.
C. R.
Berger
,
S.
Zhou
,
J. C.
Preisig
, and
P.
Willett
, “
Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing
,”
IEEE Trans. Signal Process.
58
(
3
),
1708
1721
(
2010
).
18.
J.
Huang
,
C. R.
Berger
,
S.
Zhou
, and
P.
Willett
, “
Iterative sparse channel estimation and decoding for underwater MIMO-OFDM
,”
EURASIP J. Adv. Signal Process.
2010
(
1
),
1
(
2010
).
19.
K.
Pelekanakis
and
M.
Chitre
, “
New sparse adaptive algorithms based on the natural gradient and the-norm
,”
IEEE J. Ocean. Eng.
38
(
2
),
323
332
(
2013
).
20.
P.
Ceballos Carrascosa
and
M.
Stojanovic
, “
Adaptive channel estimation and data detection for underwater acoustic MIMO-OFDM systems
,”
IEEE J. Ocean. Eng.
35
(
3
),
635
646
(
2010
).
21.
E. J.
Candes
,
J. K.
Romberg
, and
T.
Tao
, “
Stable signal recovery from incomplete and inaccurate measurements
,”
Commun. Pure Appl. Math.
59
(
8
),
1207
1223
(
2006
).
22.
J. A.
Tropp
and
A. C.
Gilbert
, “
Signal recovery from random measurements via orthogonal matching pursuit
,”
IEEE Trans. Inf. Theory
53
(
12
),
4655
4666
(
2007
).
23.
D.
Needell
and
J. A.
Tropp
, “
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
,”
Appl. Comput. Harmonic Anal.
26
(
3
),
301
321
(
2009
).
24.
S. S.
Haykin
,
Adaptive Filter Theory
(
Pearson Education
,
India
,
2008
), pp.
1
921
.
25.
R.
Tibshirani
, “
Regression shrinkage and selection via the lasso
,”
J. R. Soc. Stat. Soc. B
58
,
267
288
(
1996
).
26.
D. L.
Donoho
, “
Compressed sensing
,”
IEEE Trans. Inf. Theory
52
(
4
),
1289
1306
(
2006
).
27.
E. J.
Candès
, “
The restricted isometry property and its implications for compressed sensing
,”
C. R. Mathematique
346
(
9
),
589
592
(
2008
).
28.
D. L.
Donoho
, “
For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
,”
Commun. Pure Appl. Math.
59
(
6
),
797
829
(
2006
).
29.
E. J.
Candes
and
Y.
Plan
, “
A probabilistic and RIPless theory of compressed sensing
,”
IEEE Trans. Inf. Theory
57
(
11
),
7235
7254
(
2011
).
30.
N.
Vaswani
and
W.
Lu
, “
Modified-CS: Modifying compressive sensing for problems with partially known support
,”
IEEE Trans. Signal Process.
58
(
9
),
4595
4607
(
2010
).
31.
P.
Qarabaqi
and
M.
Stojanovic
, “
Acoustic channel modeling and simulation
(
2013
). http://millitsa.coe.neu.edu/?q=projects (Last viewed 10 November 2016).
32.
R.
Nadakuditi
and
J. C.
Preisig
, “
A channel subspace post-filtering approach to adaptive least-squares estimation
,”
IEEE Trans. Signal Process.
52
(
7
),
1901
1914
(
2004
).
33.
M.
Lustig
,
D. L.
Donoho
,
J. M.
Santos
, and
J. M.
Pauly
, “
Compressed sensing MRI
,”
IEEE Signal Process. Mag.
25
(
2
),
72
82
(
2008
).
34.
M.
Lustig
,
D. L.
Donoho
, and
J. M.
Pauly
, “
Sparse MRI: The application of compressed sensing for rapid MR imaging
,”
Magnetic Resonance Med.
58
(
6
),
1182
1195
(
2007
).
35.
E.
Van den Berg
and
M. P.
Friedlander
, “
Sparse optimization with least-squares constraints
,”
SIAM J. Optimization
21
(
4
),
1201
1229
(
2011
).
36.
E.
van den Berg
and
M. P.
Friedlander
, “
Probing the Pareto frontier for basis pursuit solutions
,”
SIAM J. Sci. Comput.
31
(
2
),
890
912
(
2008
).
37.
E.
van den Berg
and
M. P.
Friedlander
, “
SPGL1: A solver for large-scale sparse reconstruction
,” June
2007
. http://www.cs.ubc.ca/labs/scl/spgl1 (Last viewed 10 November 2016).
38.
J.
Romberg
, “
Imaging via compressive sampling [introduction to compressive sampling and recovery via convex programming]
,”
IEEE Signal Process. Mag.
25
(
2
),
14
20
(
2008
).
39.
E. J.
Candès
,
J.
Romberg
, and
T.
Tao
, “
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
,”
IEEE Trans. Inf. Theory
52
(
2
),
489
509
(
2006
).
40.
A.
Sen Gupta
,
N.
Ansari
, and
A.
Gupta
, “
Tracking the underwater acoustic channel using two-dimensional frequency sampling
,” in
IEEE OES International Symposium on Underwater Technology
,
Chennai, India
(
2015
), pp.
1
5
.
41.
N.
Ansari
,
A.
Gupta
, and
A.
Sen Gupta
, “
Physics inspired CS based underwater acoustic channel estimation
,” in
IEEE Global Conference on Signal and Information Processing (GlobalSIP)
(
2015
), pp.
1106
1110
.
You do not currently have access to this content.