A two-dimensional active acoustic metamaterial with controllable anisotropic density is introduced. The material consists of composite lead–lead zirconate titanate plates clamped to an aluminum structure with air as the background fluid. The effective anisotropic density of the material is controlled, independently for two orthogonal directions, by means of an external static electric voltage signal. The material is used in the construction of a reconfigurable waveguide capable of controlling the direction of the acoustic waves propagating through it. An analytic model based on the acoustic two-port theory, the theory of piezoelectricity, the laminated pre-stressed plate theory, and the S-parameters retrieval method is developed to predict the behavior of the material. The results are verified using the finite element method. Excellent agreement is found between both models for the studied frequency and voltage ranges. The results show that, below 1600 Hz, the density is controllable within orders of magnitude relative to the uncontrolled case. The results also suggest that simple controllers could be used to program the material density toward full control of the directivity and dispersion characteristics of acoustic waves.

1.
H. H.
Huang
,
C. T.
Sun
, and
G. L.
Huang
, “
On the negative effective mass density in acoustic metamaterials
,”
Int. J. Eng. Sci.
47
(
4
),
610
617
(
2009
).
2.
S. H.
Lee
,
C. M.
Park
,
Y. M.
Seo
,
Z. G.
Wang
, and
C. K.
Kim
, “
Acoustic metamaterial with negative density
,”
Phys. Lett. A
373
(
48
),
4464
4469
(
2009
).
3.
N.
Fang
,
D.
Xi
,
J.
Xu
,
M.
Ambati
,
W.
Srituravanich
,
C.
Sun
, and
X.
Zhang
, “
Ultrasonic metamaterials with negative modulus
,”
Nat. Mater.
5
(
6
),
452
456
(
2006
).
4.
S. H.
Lee
,
C. M.
Park
,
Y. M.
Seo
,
Z. G.
Wang
, and
C. K.
Kim
, “
Acoustic metamaterial with negative modulus
,”
J. Phys.: Condens. Matter
21
(
17
),
175704
(
2009
).
5.
J.
Li
and
C.
Chan
, “
Double-negative acoustic metamaterial
,”
Phys. Rev. E
70
(
5
),
055602
(
2004
).
6.
Y.
Cheng
,
J.
Xu
, and
X.
Liu
, “
One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus
,”
Phys. Rev. B
77
(
4
),
045134
(
2008
).
7.
D.
Torrent
and
J.
Sánchez-Dehesa
, “
Anisotropic mass density by two-dimensional acoustic metamaterials
,”
New J. Phys.
10
(
2
),
023004
(
2008
).
8.
D.
Torrent
and
J.
Sánchez-Dehesa
, “
Anisotropic mass density by radially periodic fluid structures
,”
Phys. Rev. Lett.
105
(
17
),
174301
(
2010
).
9.
L.
Zigoneanu
,
B. I.
Popa
,
A. F.
Starr
, and
S. A.
Cummer
, “
Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density
,”
J. Appl. Phys.
109
(
5
),
054906
(
2011
).
10.
J.
Li
,
L.
Fok
,
X.
Yin
,
G.
Bartal
, and
X.
Zhang
, “
Experimental demonstration of an acoustic magnifying hyperlens
,”
Nat. Mater.
8
(
12
),
931
934
(
2009
).
11.
S. A.
Cummer
and
D.
Schurig
, “
One path to acoustic cloaking
,”
New J. Phys.
9
(
3
),
45
(
2007
).
12.
S. A.
Cummer
,
B. I.
Popa
,
D.
Schurig
,
D.
Smith
,
J.
Pendry
,
M.
Rahm
, and
A.
Starr
, “
Scattering theory derivation of a 3d acoustic cloaking shell
,”
Phys. Rev. Lett.
100
(
2
),
024301
(
2008
).
13.
D.
Torrent
and
J.
Sánchez-Dehesa
, “
Acoustic cloaking in two dimensions: A feasible approach
,”
New J. Phys.
10
(
6
),
063015
(
2008
).
14.
M.
Fink
, “
Acoustic metamaterials: Nearly perfect sound absorbers
,”
Nat. Mater.
13
(
9
),
848
849
(
2014
).
15.
D.
Torrent
and
J.
Sánchez-Dehesa
, “
Acoustic metamaterials for new two-dimensional sonic devices
,”
New J. Phys.
9
(
9
),
323
(
2007
).
16.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y. Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
, “
Locally resonant sonic materials
,”
Science
289
(
5485
),
1734
1736
(
2000
).
17.
C. J.
Naify
,
C. M.
Chang
,
G.
McKnight
, and
S.
Nutt
, “
Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials
,”
J. Appl. Phys.
108
(
11
),
114905
(
2010
).
18.
C. J.
Naify
,
C. M.
Chang
,
G.
McKnight
,
F.
Scheulen
, and
S.
Nutt
, “
Membrane-type metamaterials: Transmission loss of multi-celled arrays
,”
J. Appl. Phys.
109
(
10
),
104902
(
2011
).
19.
L.
Fok
and
X.
Zhang
, “
Negative acoustic index metamaterial
,”
Phys. Rev. B
83
(
21
),
214304
(
2011
).
20.
F.
Bongard
,
H.
Lissek
, and
J.
Mosig
, “
Acoustic transmission line metamaterial with negative/zero/positive refractive index
,”
Phys. Rev. B
82
(
9
),
094306
(
2010
).
21.
Y. M.
Seo
,
J. J.
Park
,
S. H.
Lee
,
C. M.
Park
,
C. K.
Kim
, and
S. H.
Lee
, “
Acoustic metamaterial exhibiting four different sign combinations of density and modulus
,”
J. Appl. Phys.
111
(
2
),
023504
(
2012
).
22.
M.
Oudich
,
X.
Zhou
, and
M.
Badreddine Assouar
, “
General analytical approach for sound transmission loss analysis through a thick metamaterial plate
,”
J. Appl. Phys.
116
(
19
),
193509
(
2014
).
23.
M.
Badreddine Assouar
,
M.
Senesi
,
M.
Oudich
,
M.
Ruzzene
, and
Z.
Hou
, “
Broadband plate-type acoustic metamaterial for low-frequency sound attenuation
,”
Appl. Phys. Lett.
101
(
17
),
173505
(
2012
).
24.
Y.
Li
,
T.
Chen
,
X.
Wang
,
Y.
Xi
, and
Q.
Liang
, “
Enlargement of locally resonant sonic band gap by using composite plate-type acoustic metamaterial
,”
Phys. Lett. A
379
(
5
),
412
416
(
2015
).
25.
L.
Airoldi
and
M.
Ruzzene
, “
Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos
,”
New J. Phys.
13
(
11
),
113010
(
2011
).
26.
Y. Y.
Chen
,
G. L.
Huang
, and
C. T.
Sun
, “
Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting
,”
J. Vib. Acoust.
136
(
6
),
061008
(
2014
).
27.
M. A.
Nouh
,
O. J.
Aldraihem
, and
A.
Baz
, “
Periodic metamaterial plates with smart tunable local resonators
,”
J. Intel. Mat. Sys. Str.
27
(
13
),
1829
1845
(
2016
).
28.
H.
Zhang
,
J.
Wen
,
Y.
Xiao
,
G.
Wang
, and
X.
Wen
, “
Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches
,”
J. Sound Vib.
343
,
104
120
(
2015
).
29.
W.
Zhou
,
Y.
Wu
, and
L.
Zuo
, “
Vibration and wave propagation attenuation for metamaterials by periodic piezoelectric arrays with high-order resonant circuit shunts
,”
Smart Mater. Struct.
24
(
6
),
065021
(
2015
).
30.
F.
Casadei
,
T.
Delpero
,
A.
Bergamini
,
P.
Ermanni
, and
M.
Ruzzene
, “
Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials
,”
J. Appl. Phys.
112
(
6
),
064902
(
2012
).
31.
B. J.
Kwon
,
J. Y.
Jung
,
D.
Lee
,
K. C.
Park
, and
I. K.
Oh
, “
Tunable acoustic waveguide based on vibro-acoustic metamaterials with shunted piezoelectric unit cells
,”
Smart Mater. Struct.
24
(
10
),
105018
(
2015
).
32.
P.
Celli
and
S.
Gonella
, “
Tunable directivity in metamaterials with reconfigurable cell symmetry
,”
Appl. Phys. Lett.
106
(
9
),
091905
(
2015
).
33.
A.
Baz
, “
The structure of an active acoustic metamaterial with tunable effective density
,”
New J. Phys.
11
(
12
),
123010
(
2009
).
34.
W.
Akl
and
A.
Baz
, “
Multicell active acoustic metamaterial with programmable effective densities
,”
J. Dyn. Sys., Meas., Control
134
(
6
),
061001
(
2012
).
35.
W.
Akl
and
A.
Baz
, “
Experimental characterization of active acoustic metamaterial cell with controllable dynamic density
,”
J. Appl. Phys.
112
(
8
),
084912
(
2012
).
36.
X.
Chen
,
X.
Xu
,
S.
Ai
,
H.
Chen
,
Y.
Pei
, and
X.
Zhou
, “
Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields
,”
Appl. Phys. Lett.
105
(
7
),
071913
(
2014
).
37.
S.
Xiao
,
G.
Ma
,
Y.
Li
,
Z.
Yang
, and
P.
Sheng
, “
Active control of membrane-type acoustic metamaterial by electric field
,”
Appl. Phys. Lett.
106
(
9
),
091904
(
2015
).
38.
Y.
Gu
,
Y.
Cheng
,
J.
Wang
, and
X.
Liu
, “
Controlling sound transmission with density-near-zero acoustic membrane network
,”
J. Appl. Phys.
118
(
2
),
024505
(
2015
).
39.
M. L.
Munjal
,
Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design
(
Wiley-Interscience
,
New York
,
1987
), pp.
55
57
.
40.
R.
Zhu
,
G. L.
Huang
, and
G. K.
Hu
, “
Effective dynamic properties and multi-resonant design of acoustic metamaterials
,”
J. Vib. Acoust.
134
(
3
),
031006
(
2012
).
41.
P.
Li
,
S.
Yao
,
X.
Zhou
,
G.
Huang
, and
G.
Hu
, “
Effective medium theory of thin-plate acoustic metamaterials
,”
J. Acoust. Soc. Am.
135
(
4
),
1844
1852
(
2014
).
42.
S.
Nygrd
, “
Low frequency modelling of complex duct networks
,” Tech. Licent. thesis,
KTH, Marcus Wallenb. Lab. Sound Vib.
,
1999
.
43.
X.
Chen
,
T.
Grzegorczyk
,
B. I.
Wu
,
J.
Pacheco
, and
J.
Kong
, “
Robust method to retrieve the constitutive effective parameters of metamaterials
,”
Phys. Rev. E
70
(
1
),
016608
(
2004
).
44.
D. R.
Smith
,
D. C.
Vier
,
Th.
Koschny
, and
C. M.
Soukoulis
, “
Electromagnetic parameter retrieval from inhomogeneous metamaterials
,”
Phys. Rev. E
71
(
3
),
036617
(
2005
).
45.
Z.
Szabo
,
G. H.
Park
,
R.
Hedge
, and
E. P.
Li
., “
A unique extraction of metamaterial parameters based on Kramers-Kronig relationship
,”
IEEE T. Microw. Theory
58
(
10
),
2646
2653
(
2010
).
46.
V.
Fokin
,
M.
Ambati
,
C.
Sun
, and
X.
Zhang
, “
Method for retrieving effective properties of locally resonant acoustic metamaterials
,”
Phys. Rev. B
76
(
14
),
144302
(
2007
).
47.
B. I.
Popa
and
S.
Cummer
, “
Design and characterization of broadband acoustic composite metamaterials
,”
Phys. Rev. B
80
(
17
),
174303
(
2009
).
48.
B. I.
Popa
,
L.
Zigoneanu
, and
S.
Cummer
, “
Tunable active acoustic metamaterials
,”
Phys. Rev. B
88
(
2
),
024303
(
2013
).
49.
N.
Cselyuszka
,
M.
Sečujski
, and
V.
Crnojević-Bengin
, “
Analysis of acoustic metamaterials—Acoustic scattering matrix and extraction of effective parameters
,” in
Proceedings of Metamaterials, Metamorphose VI
(
2012
), pp.
17
22
.
50.
V.
Lucarini
,
J. J.
Saarinen
,
K. E.
Peiponen
, and
E. M.
Vartianen
, “
Kramers-Kronig relations in optical materials research
,” Number v. 110 in Springer Series in Optical Sciences (
Springer
,
Berlin, New York
,
2005
), pp.
27
28
.
51.
R.
Glav
and
M.
Abom
, “
A general formalism for analyzing acoustic 2-port networks
,”
J. Sound Vib.
202
(
5
),
739
747
(
1997
).
52.
J. E.
Young
, “
Transmission of sound through thin elastic plates
,”
J. Acoust. Soc. Am.
26
(
4
),
485
492
(
1954
).
53.
J. N.
Reddy
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
, 2nd ed. (
CRC Press
,
Boca Raton, FL
,
2004
), pp.
356
357
.
54.
M.
Abom
, “
Measurement of the scattering-matrix of acoustical two-ports
,”
Mech. Syst. Signal Process.
5
(
2
),
89
104
(
1991
).
55.
ASTM E2611-09
, “
Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method
,”
Technical report
, ASTM International (
2009
).
56.
ANSYS, Inc.
,
ANSYS Mechanical APDL Acoustic Analysis Guide
, November
2013
.
57.
R.
Fleury
and
A.
Alù
, “
Extraordinary sound transmission through density-near-zero ultranarrow channels
,”
Phys. Rev. Lett.
111
(
5
),
055501
(
2013
).
You do not currently have access to this content.