In situ measurements of compressional and shear wave speed and attenuation were collected 30 cm below the water-sediment interface in Currituck Sound, North Carolina at two field locations having distinctly different sediment types: medium-to-fine-grained sand and fine-grained sand with approximately 10% mud content. Shear wave measurements were performed with bimorph transducers to generate and receive horizontally polarized shear waves in the 300 Hz to 1 kHz band, and compressional wave measurements were performed using hydrophones operated in the 5 kHz to 100 kHz band. Sediment samples were collected at both measurement sites and later analyzed in the laboratory to characterize the sediment grain size distribution for each field location. Compressional and shear wave speed and attenuation were estimated from the acoustic measurements, and preliminary comparisons to the extended Biot model by Chotiros and Isakson [J. Acoust. Soc. 135, 3264–3279 (2014)] and the viscous grain-shearing theory by Buckingham [J. Acoust. Soc. 136, 2478–2488 (2014)] were performed.

1.
M. J.
Buckingham
, “
Analysis of shear-wave attenuation in unconsolidated sands and glass beads
,”
J. Acoust. Soc. Am.
136
,
2478
2488
(
2014
).
2.
N. P.
Chotiros
and
M. J.
Isakson
, “
Shear wave attenuation and micro-fluidics in water-saturated sand and glass beads
,”
J. Acoust. Soc. Am.
135
,
3264
3279
(
2014
).
3.
E. L.
Hamilton
,
G.
Shumway
,
H. W.
Menard
, and
C. J.
Shipek
, “
Acoustic and other physical properties of shallow-water sediments off San Diego
,”
J. Acoust. Soc. Am.
28
,
1
15
(
1956
).
4.
E. L.
Hamilton
, “
Sediment sound velocity measurements made in situ from bathyscape Trieste
,”
J. Geophys. Res.
68
,
5991
5998
, doi: (
1963
).
5.
E. L.
Hamilton
, “
Sound velocity and related properties of marine sediments, North Pacific
,”
J. Geophys. Res.
75
,
4423
4446
, doi: (
1970
).
6.
A. B.
Wood
and
D. E.
Weston
, “
The propagation of sound in mud
,”
Acustica
14
,
156
162
(
1964
).
7.
L. A.
Mayer
,
B. J.
Kraft
,
P.
Simkin
,
P.
Lavoie
,
E.
Jabs
, and
E.
Lynskey
, “
In situ determination of the variability of the seafloor acoustic properties: An example from the ONR Geoclutter area
,” in
Impact of Littoral Environmental Variability on Acoustic Predictions and Sonar Performance
, edited by
N. G.
Pace
and
F. B.
Jensen
(
Kluwer Academic Publishers
,
Dordrecht, the Netherlands
,
2002
), pp.
115
122
.
8.
J.
Yang
,
D.
Tang
, and
K. L.
Williams
, “
Direct measurement of sediment sound speed in Shallow Water '06
,”
J. Acoust. Soc. Am.
124
,
EL116
EL121
(
2008
).
9.
G. B. N.
Robb
,
A. I.
Best
,
J. K.
Dix
,
J. M.
Bull
,
T. G.
Leighton
, and
P. R.
White
, “
The frequency dependence of compressional wave velocity and attenuation coefficient of intertidal marine sediments
,”
J. Acoust. Soc. Am.
120
,
2526
2537
(
2006
).
10.
X.
Demoulin
,
T.
Garlan
,
L.
Guillon
, and
P.
Guyomard
, “
In situ acoustic measurements of water saturated beach sands
,”
Proc. Inst. Acoust.
37
,
40
47
(
2015
).
11.
A.
Turgut
and
T.
Yamamoto
, “
Measurements of acoustic wave velocities and attenuation in marine sediments
,”
J. Acoust. Soc. Am.
87
,
2376
2383
(
1990
).
12.
T. G.
Muir
,
T.
Akal
,
M. D.
Richardson
,
R. D.
Stoll
,
A.
Caiti
, and
J. M.
Hovem
, “
Comparison of shear wave velocity and attenuation measurements
,” in
Shear Waves in Marine Sediments
, edited by
M. D.
Richardson
,
J. M.
Hovem
, and
R. D.
Stoll
(
Springer
,
Dordrecht, the Netherlands
,
1991
), pp.
283
294
.
13.
A. I.
Best
,
J. A.
Roberts
, and
M. L.
Somers
, “
A new instrument for making in-situ acoustic and geotechnical measurements in seafloor sediments
,”
J. Soc. Und. Tech.
23
,
123
131
(
1998
).
14.
A.
Barbagelata
,
M. D.
Richardson
,
B.
Miaschi
,
E.
Muzi
,
P.
Guerrini
,
L.
Troiano
, and
T.
Akal
, “
ISSAMS: An In Situ Sediment Acoustic Measurement System
,” in
Shear Waves in Marine Sediments
, edited by
M. D.
Richardson
,
J. M.
Hovem
, and
R. D.
Stoll
(
Springer
,
Dordrecht, the Netherlands
,
1991
), pp.
305
312
.
15.
M. D.
Richardson
and
K. B.
Briggs
, “
In situ and laboratory geoacoustic measurements in soft mud and hard-packed sand sediments: Implications for high-frequency acoustic propagation and scattering
,”
Geo-Mar. Lett.
16
,
196
203
(
1996
).
16.
M. J.
Buckingham
and
M. D.
Richardson
, “
On tone-burst measurements of sound speed and attenuation in sandy marine sediments
,”
IEEE J. Oceanic Eng.
27
,
429
453
(
2002
).
17.
M. J.
Buckingham
, “
Compressional and shear wave properties of marine sediments: Comparison between theory and data
,”
J. Acoust. Soc. Am.
117
,
137
152
(
2005
).
18.
D.
Shirley
, “
An improved shear wave transducer
,”
J. Acoust. Soc. Am.
63
,
1643
1645
(
1978
).
19.
A. R.
McNeese
,
K. M.
Lee
,
M. S.
Ballard
,
T. G.
Muir
,
P. S.
Wilson
, and
R. D.
Costley
, “
Investigation of piezoelectric bimorph bender transducers to generate and receive shear waves
,”
Proc. Mtgs. Acoust.
22
,
030001
(
2015
).
20.
P. R.
Bevington
and
D. K.
Robinson
,
Data Reduction and Error Analysis for the Physical Sciences
, 2nd ed. (
McGraw-Hill
,
Boston, MA
,
1992
), pp.
41
43
.
21.
M.
Arroyo
,
D. M.
Wood
, and
P. D.
Greening
, “
Source near-field effects and pulse tests in soil samples
,”
Géotechnique
53
,
337
345
(
2003
).
22.
D. R.
Jackson
and
M. D.
Richardson
,
High-Frequency Seafloor Acoustics
(
Springer
,
New York
,
2007
), pp.
86
88
, 112, 131–133.
23.
B. W.
Fleming
, “
A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams
,”
Cont. Shelf Res.
20
,
1125
1137
(
2000
).
24.
R. L.
Folk
and
W. C.
Ward
, “
Brazos River Bar: A study in the significance of grain size parameters
,”
J. Sed. Petrol.
27
,
3
26
(
1957
).
25.
H.
Sato
,
K.
Ono
,
C. T.
Johnston
, and
A.
Yamagishi
, “
First-principles studies on the elastic constants of a 1:1 layered kaolinite mineral
,”
Am. Mineral.
90
,
1824
1826
(
2005
).
26.
M. J.
Buckingham
, “
Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments
,”
J. Acoust. Soc. Am.
108
,
2796
2815
(
2000
).
27.
M. J.
Buckingham
, “
On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments
,”
J. Acoust. Soc. Am.
122
,
1486
1501
(
2007
).
28.
A.
Mallock
, “
The damping of sound by frothy liquids
,”
Proc. R. Soc. Ser. A
84
,
391
395
(
1910
).
29.
A. B.
Wood
,
A Textbook of Sound
, 2nd ed. (
Bell
,
London
,
1946
), pp.
360
363
.
30.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
31.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
32.
R. D.
Stoll
, “
Acoustic waves in ocean sediments
,”
Geophysics
42
,
715
725
(
1977
).
33.
R. D.
Stoll
, “
Velocity dispersion in water-saturated granular sediment
,”
J. Acoust. Soc. Am.
111
,
785
793
(
2002
).
34.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
35.
A.
Turgut
, “
An investigation of casaulity for Biot models by using Kramers-Krönig relations
,” in
Shear Waves in Marine Sediments
, edited by
M. D.
Richardson
,
J. M.
Hovem
, and
R. D.
Stoll
(
Springer
,
Dordrecht, the Netherlands
,
1991
), pp.
21
28
.
36.
L.
Schwartz
and
T. J.
Plona
, “
Ultrasonic propagation in close-packed disordered suspensions
,”
J. Appl. Phys.
55
,
3971
3977
(
1984
).
37.
M.
Kimura
, “
Velocity dispersion and attenuation in granular marine sediments: Comparison of measurements with predictions using acoustic models
,”
J. Acoust. Soc. Am.
129
,
3544
3561
(
2011
).
38.
E. L.
Hamilton
, “
Compressional-wave attenuation in marine sediments
,”
Geophysics
37
,
620
646
(
1972
).
39.
M. D.
Richardson
, “
In-situ shallow-water sediment geoacoustic properties
,” in
Shallow-Water Acoustics
, edited by
R.
Zhang
and
J.
Zhou
(
China Ocean Press
,
Beijing, China
,
1997
), pp.
163
170
.
40.
D. R.
Corbett
,
D.
Vance
,
E.
Letrick
,
D.
Mallinson
, and
S.
Culver
, “
Decadal-scale sediment dynamics and environmental change in the Albemarle Estuarine System, North Carolina
,”
Estuarine Coast. Shelf Sci.
71
,
717
729
(
2007
).
41.
J. L.
Hyland
,
W. L.
Balthis
,
M.
Posey
,
C. T.
Hackney
, and
T.
Alphin
, “
The soft-bottom macrobenthos of North Carolina Estuaries
,”
Estuaries
27
,
501
514
(
2004
).
42.
L. M.
Mayer
,
L. L.
Schick
,
K. R.
Hardy
,
R.
Wagai
, and
J.
McCarthy
, “
Organic matter in small mesopores in sediments and soils
,”
Geochim. Cosmochim. Acta
68
,
3863
3872
(
2004
).
43.
M. F.
Ashby
,
L. J.
Gibson
,
U. G. K.
Wegst
, and
R.
Olive
, “
The mechanical properties of natural materials. I. Material property charts
,”
Proc. R. Soc. A.
450
,
123
140
(
1995
).
44.
U. G. K.
Wegst
and
M. F.
Ashby
, “
The mechanical efficiency of natural materials
,”
Philos. Mag.
84
,
2167
2181
(
2004
).
45.
L.
Eaton
, “
A preliminary survey of benthic macroinvertebrates of Currituck Sound, North Carolina
,”
J. Elisha Mitchell Sci. Soc.
110
,
121
129
(
1994
), available at http://dc.lib.unc.edu/cdm/singleitem/collection/jncas/id/3434/rec/8.
46.
S. E.
Jones
and
C. F.
Jago
, “
In situ assessment of modification of sediment properties by burrowing invertebrates
,”
Mar. Biol.
115
,
133
142
(
1993
).
You do not currently have access to this content.