The acoustic properties of an air-saturated macroscopically inhomogeneous aluminum foam in the equivalent fluid approximation are studied. A reference sample built by forcing a highly compressible melamine foam with conical shape inside a constant diameter rigid tube is studied first. In this process, a radial compression varying with depth is applied. With the help of an assumption on the compressed pore geometry, properties of the reference sample can be modelled everywhere in the thickness and it is possible to use the classical transfer matrix method as theoretical reference. In the mixture approach, the material is viewed as a mixture of two known materials placed in a patchwork configuration and with proportions of each varying with depth. The properties are derived from the use of a mixing law. For the reference sample, the classical transfer matrix method is used to validate the experimental results. These results are used to validate the mixture approach. The mixture approach is then used to characterize a porous aluminium for which only the properties of the external faces are known. A porosity profile is needed and is obtained from the simulated annealing optimization process.

1.
L.
De Ryck
,
J. P.
Groby
,
P.
Leclaire
,
W.
Lauriks
,
A.
Wirgin
,
Z. E. A.
Fellah
, and
C.
Depollier
, “
Acoustic wave propagation in a macroscopically inhomogeneous porous medium saturated by a fluid
,”
Appl. Phys. Lett.
90
,
181901
(
2007
).
2.
L.
De Ryck
,
W.
Lauriks
,
Z. E. A.
Fellah
,
A.
Wirgin
,
J. P.
Groby
,
P.
Leclaire
, and
C.
Depollier
, “
Acoustic wave propagation and internal fields in rigid frame macroscopically inhomogeneous porous media
,”
J. Appl. Phys.
102
,
024910
(
2007
).
3.
G.
Gautier
,
L.
Kelders
,
J. P.
Groby
,
O.
Dazel
,
L.
De Ryck
, and
P.
Leclaire
, “
Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material
,”
J. Acoust. Soc. Am.
130
,
1390
1398
(
2011
).
4.
A.
Geslain
,
J. P.
Groby
,
O.
Dazel
,
S.
Mahasaranon
,
K. V.
Horoshenkov
, and
A.
Khan
, “
An application of the Peano series expansion to predict sound propagation in materials with continuous pore stratification
,”
J. Acoust. Soc. Am.
132
,
208
215
(
2012
).
5.
B.
Castagnède
,
A.
Aknine
,
B.
Brouard
, and
V.
Tarnow
, “
Effects of compression on the sound absorption of fibrous materials
,”
Appl. Acoust.
61
,
173
182
(
2000
).
6.
C. N.
Wang
,
Y. M.
Kuo
, and
S. K.
Chen
, “
Effects of compression on the sound absorption of porous materials with elastic frame
,”
Appl. Acoust.
69
,
31
39
(
2008
).
7.
B.
Campolina
,
N.
Dauchez
,
N.
Atalla
, and
O.
Doutres
, “
Effect of porous material compression on the sound transmission of a covered single leaf panel
,”
Appl. Acoust.
73
,
791
797
(
2012
).
8.
A.
Geslain
,
O.
Dazel
,
J.-P.
Groby
,
S.
Sahraoui
, and
W.
Lauriks
, “
Influence of static compression on mechanical parameters of acoustic foams
,”
J. Acoust. Soc. Am.
130
,
818
825
(
2011
).
9.
J. F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd ed. (
John Wiley and Sons
,
New York
,
2009
), Chap. 11.
10.
A.
Bensoussan
,
J. L.
Lions
, and
G.
Papanicolaou
,
Asymptotic Analysis for Periodic Structures, Studies in Mathematics and Its Applications
(
North-Holland
,
Amsterdam
,
1978
), Vol.
5
,
700
pp.
11.
X.
Olny
and
C.
Boutin
, “
Acoustic wave propagation in double porosity media
,”
J. Acoust. Soc. Am.
114
,
73
89
(
2003
).
12.
K.
Verdière
,
R.
Panneton
,
S.
Elkoun
,
T.
Dupont
, and
P.
Leclaire
, “
Transfer matrix method applied to the parallel assembly of sound absorbing materials
,”
J. Acoust. Soc. Am.
134
,
4648
4658
(
2013
).
13.
K.
Verdière
,
R.
Panneton
,
S.
Elkoun
,
T.
Dupont
, and
P.
Leclaire
, “
Comparison between parallel transfer matrix method and admittance sum method
,”
J. Acoust. Soc. Am.
136
,
EL90
EL95
(
2014
).
14.
Y.
Salissou
and
R.
Panneton
, “
Pressure/mass method to measure open porosity of porous solids
,”
J. Appl. Phys.
101
,
124913
(
2007
).
15.
P.
Leclaire
,
L.
Kelders
,
W.
Lauriks
,
M.
Melon
,
N.
Brown
, and
B.
Castagnède
, “
Determination of the viscous and thermal characteristic lengths of plastic foams by ultrasonic measurements in helium and air
,”
J. Appl. Phys.
80
,
2009
2012
(
1996
).
16.
R.
Panneton
and
X.
Olny
, “
Acoustical determination of the parameters governing viscous dissipation in porous media
,”
J. Acoust. Soc. Am.
119
,
2027
2040
(
2006
).
17.
X.
Olny
and
R.
Panneton
, “
Acoustical determination of the parameters governing thermal dissipation in porous media
,”
J. Acoust. Soc. Am.
123
,
814
824
(
2008
).
18.
ISO9053
:
Acoustics—Materials for Acoustical Applications—Determination of Airflow Resistance
(
International Organization for Standardization
,
Geneva, Switzerland
,
1991
).
19.
T.
Bourbié
,
O.
Coussy
, and
B.
Zinszner
,
Acoustique des Milieux Poreux (Acoustics of Porous Media)
(
Editions Technip
,
Paris
,
1986
).
20.
R.
Panneton
, “
Comments on the limp frame equivalent fluid model for porous media
,”
J. Acoust. Soc. Am.
122
,
EL217
221
(
2007
).
21.
X. L.
Gong
,
Y.
Liu
,
S. Y.
He
, and
J.
Lu
, “
Manufacturing and low-velocity impact response of a new composite material: Metal porous polymer composite (mppc)
,”
J. Mater. Sci. Technol.
20
,
65
68
(
2004
).
22.
S.
Kirkpatrick
,
C. D.
Gerlatt
, and
M. P.
Vecchi
, “
Optimization by simulated annealing
,”
Science
220
,
671
680
(
1983
).
You do not currently have access to this content.