The Green's function (GF) for the scalar wave equation is numerically constructed by an advanced geometric ray-tracing method based on the eikonal approximation related to the semiclassical propagator. The underlying theory is first briefly introduced, and then it is applied to acoustics and implemented in a ray-tracing-type numerical simulation. The so constructed numerical method is systematically used to calculate the sound field in a rectangular (cuboid) room, yielding also the acoustic modes of the room. The simulated GF is rigorously compared to its analytic approximation. Good agreement is found, which proves the devised numerical approach potentially useful also for low frequency acoustic modeling, which is in practice not covered by geometrical methods.

1.
Y.
Kawai
, “
Boundary element method for computing transient acoustic waves in a room
,”
Kansai University Report No. 49
(
2007
), pp.
69
77
.
2.
V.
Easwaran
and
A.
Craggs
, “
On further validation and use of the finite-element method to room acoustics
,”
J. Sound Vib.
187
,
195
212
(
1995
).
3.
K.
Kowalczyk
and
M.
van Walstijn
, “
Virtual room acoustics using finite difference methods. How to model and analyse frequency-dependent boundaries?,”
in
International Symposium on Communications, Control, and Signal Processing
, St. Julians, Malta (
2008
), Vol. 187, pp.
1504
1509
.
4.
W.
Desmet
and
D.
Vandepitte
, “
Finite element method in acoustics
,” in
ISAAC 13- International Seminar on Applied Acoustics
, Leuven, Belgium (
2002
), pp.
37
81
.
5.
I.
Harari
and
T. J. R.
Hughes
, “
A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics
,”
Comput. Methods Appl. Mech. Eng.
97
,
77
102
(
1992
).
6.
A.
Krokstad
,
S.
Strom
, and
S.
Sørsdal
, “
Calculating the acoustical room response by the use of a ray tracing technique
,”
J. Sound Vib.
8
,
118
125
(
1968
).
7.
G.
Naylor
, “
ODEON Another hybrid room acoustical model
,”
Appl. Acoust.
38
(
2-4
),
131
143
(
1993
).
8.
B.-I.
Dalenbäck
, “
A new model for room acoustic prediction and auralization
,” Ph.D. thesis,
Chalmers University of Technology
,
Gothenburg, Sweden
,
1995
.
9.
T.
Le Pollès
,
J.
Picaut
,
S.
Colle
,
M.
Bérengier
, and
C.
Bardos
, “
Sound-field modeling in architectural acoustics by a transport theory: Application to street canyons
,”
Phys. Rev. E
72
,
046609
(
2005
).
10.
J.
Picaut
,
J.
Hardy
, and
L.
Simon
, “
Sound propagation in urban areas: A periodic disposition of buildings
,”
Phys. Rev. E
60
,
4851
4859
(
1999
).
11.
J. B.
Allen
and
D. A.
Berkley
, “
Image method for efficiently simulating small-room acoustics
,”
J. Acoust. Soc. Am.
65
,
943
950
(
1979
).
12.
T.
Funkhouser
,
N.
Tsingos
,
I.
Carlbom
,
G.
Elko
,
G.
Pingali
,
M.
Sondhi
,
J.
West
,
G.
Elko
,
P.
Min
, and
A.
Ngan
, “
A beam tracing method for interactive architectural acoustics
,”
J. Acoust. Soc. Am.
115
,
739
756
(
2004
).
13.
M.
Vorländer
, “
Simulation of the transient and steady-state sound propagation in rooms using a new combined ray-tracing/image-source algorithm
,”
J. Acoust. Soc. Am.
86
,
172
177
(
1989
).
14.
M.
Vorländer
, “
Computer simulations in room acoustics: Concepts and uncertainties
,”
J. Acoust. Soc. Am.
133
,
1203
1213
(
2013
).
15.
L.
Savioja
and
U. P.
Svensson
, “
Overview of geometrical room acoustic modeling techniques
,”
J. Acoust. Soc. Am.
138
,
708
730
(
2015
).
16.
A.
Pompei
,
M. A.
Sumbatyan
, and
N. F.
Todorov
, “
Computer models in room acoustics: The ray tracing method and the auralization algorithms
,”
Acoust. Phys.
55
,
821
831
(
2009
).
17.
J. S.
Suh
and
P. A.
Nelson
, “
Measurement of transient response of rooms and comparison with geometrical acoustic models
,”
J. Acoust. Soc. Am.
105
,
2304
2317
(
1999
).
18.
C.-H.
Jeong
,
I.
Jeong-Guon
, and
J.
Rindel
, “
An approximate treatment of reflection coefficient in the phased beam tracing method for the simulation of enclosed sound fields at medium frequencies
,”
Appl. Acoust.
69
,
601
613
(
2008
).
19.
S. M.
Dance
,
J. P.
Roberts
, and
B. M.
Shield
, “
Computer prediction of sound distribution in enclosed spaces using an interference pressure model
,”
Appl. Acoust.
44
,
53
65
(
1995
).
20.
M.
Aretz
,
P.
Dietrich
, and
M.
Vorländer
, “
Application of the mirror source method for low frequency sound prediction in rectangular rooms
,”
Acta Acust. Acust.
100
,
306
319
(
2014
).
21.
M.
Schröder
, “
Die statistischen parameter der frequenzkurven von grossen räumen” (“Statistical parameters of frequency responses in large rooms”)
,
Acta Acust. Acust.
4
,
594
600
(
1954
).
22.
M. C.
Gutzwiller
,
Chaos in Classical and Quantum Mechanics
(
Spring
,
New York
,
1990
), pp.
186
, 188.
23.
R.
Bellman
and
R.
Vasudevan
,
Wave Propagation—An Invariant Imbedding Approach
(
Springer
,
The Netherlands
,
1986
), p.
21
.
24.
M.
Bass
,
Handbook of Optics: Volume I—Geometrical and Physical Optics, Polarized Light, Components and Instruments
(
McGraw-Hill Professional
,
2010
).
25.
A. D.
Pierce
,
Acoustics –An Introduction to Its Physical Principles and Applications
(
Acoustical Society of America
,
Melville, New York
,
1989
), pp.
371
388
.
26.
P.
Cvitanović
,
R.
Artuso
,
R.
Mainieri
,
G.
Tanner
, and
G.
Vattay
,
Chaos: Classical and Quantum
(
Niels Bohr Institute
,
Copenhagen
,
2012
), pp.
634
637
. Available at ChaosBook.org (Last viewed 21 April 2016).
27.
W. B.
Joyce
, “
Classical-particle description of photons and phonons
,”
Phys. Rev. D
9
,
3234
3256
(
1974
).
28.
T. D.
Rossing
,
Springer Handbook of Acoustics
(
Springer
,
New York
,
2007
), pp.
60
, 85.
29.
H.
Kuttruff
,
Acoustics: An Introduction
(
Taylor and Francis
,
New York
,
2007
), p.
100
.
30.
P. M.
Morse
and
K.
Uno Ingard
,
Theoretical Acoustics
(
McGraw-Hill
,
New York
,
1968
), p.
580
.
31.
S.
Hassani
,
Mathematical Physics: A Modern Introduction to Its Foundations
(
Springer International Publishing
,
Switzerland
,
2013
), p.
630
.
32.
P. M.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics, Part I
(
McGraw-Hill
,
New York
,
1953
), p.
886
.
You do not currently have access to this content.