Two experiments were performed that investigated the effects of (1) click level and (2) continuous broadband noise on the binaural auditory brainstem response (ABR) of normal-hearing and hearing-impaired bottlenose dolphins (Tursiops truncatus). In addition to spectrally uncompensated clicks and noise, stimuli were digitally compensated to achieve “white” spectra (flat spectral density level) or “pink” spectra (spectral density level rolling off at −3 dB/octave). For experiment 1, in all spectral conditions, ABR peak latencies increased and peak amplitudes decreased with decreasing click level, but interwave intervals changed little. Latency-intensity function (LIF) slopes ranged from −3 to −11 μs/dB. The LIF slopes of ABR peaks evoked by uncompensated clicks were steeper in dolphins with hearing loss. Click level was held constant during experiment 2, and the effect of bilaterally delivered broadband masking noise on the ABR was investigated. Clicks and noise were filtered to create a pink click/noise condition and a white click/noise condition. With increasing levels of masking noise, peak latencies increased (although only P1-P4 white reached significance), peak amplitudes decreased, and interpeak intervals increased (although not significantly). These effects are compared to results reported for terrestrial mammals, and implications for auditory health assessment and biosonar function are discussed.

1.
Au
,
W. W. L.
(
1993
).
The Sonar of Dolphins
(
Springer-Verlag
,
New York
),
227
pp.
2.
Burkard
,
R.
,
Durand
,
B.
,
Secor
,
C.
, and
McFadden
,
S.
(
2001
). “
Auditory brainstem responses in CBA mice and in mice with deletion of the RAB3A gene
,” in
Handbook of Mouse Auditory Research From Behavior to Molecular Biology
, edited by
J.
Willott
(
CRC Press
,
Boca Raton, FL
), pp.
603
615
.
3.
Burkard
,
R.
,
Feldman
,
M.
, and
Voigt
,
H.
(
1990a
). “
The brainstem auditory evoked response in the rat. Normative studies, with observations concerning the effects of ossicular disruption
,”
Audiology
29
,
146
162
.
4.
Burkard
,
R.
, and
Hecox
,
K.
(
1983a
). “
The effect of broadband noise on the human brainstem auditory evoked response. I. Rate and intensity effects
,”
J. Acoust. Soc. Am.
74
(
4
),
1204
1213
.
5.
Burkard
,
R.
, and
Hecox
,
K.
(
1983b
). “
The effect of broadband noise on the human brainstem auditory evoked response. II. Frequency specificity
,”
J. Acoust. Soc. Am.
74
,
1214
1223
.
6.
Burkard
,
R.
, and
Hecox
,
K.
(
1987a
). “
The effect of broadband noise on the human brain-stem auditory evoked response. III. Anatomic locus
,”
J. Acoust. Soc. Am.
81
,
1050
1063
.
7.
Burkard
,
R.
, and
Hecox
,
K.
(
1987b
). “
The effect of broadband noise on the human brain-stem auditory evoked response. IV. Additivity of forward-masking and rate-induced wave V latency shifts
,”
J. Acoust. Soc. Am.
81
,
1064
1072
.
8.
Burkard
,
R.
, and
Moss
,
C. F.
(
1994
). “
The brain-stem auditory-evoked response in the big brown bat (Eptesicus fuscus) to clicks and frequency-modulated sweeps
,”
J. Acoust. Soc. Am.
96
,
801
810
.
9.
Burkard
,
R.
,
Shi
,
Y.
, and
Hecox
,
K.
(
1990b
). “
Brain-stem auditory-evoked responses elicited by maximum length sequences: Effect of simultaneous masking noise
,”
J. Acoust. Soc. Am.
87
(
4
),
1665
1672
.
10.
Burkard
,
R.
, and
Voigt
,
H.
(
1989a
). “
Stimulus dependencies of the gerbil brain-stem auditory-evoked response (BAER). I. Effects of click level, rate, and polarity
,”
J. Acoust. Soc. Am.
85
,
2514
2525
.
11.
Burkard
,
R.
, and
Voigt
,
H. F.
(
1989b
). “
Stimulus dependencies of the gerbil brain-stem auditory-evoked response (BAER). II: Effects of broadband noise level and high-pass masker cutoff frequency across click polarity
,”
J. Acoust. Soc. Am.
85
,
2526
2536
.
12.
Burkard
,
R.
, and
Voigt
,
H. F.
(
1990
). “
Stimulus dependencies of the gerbil brain-stem auditory-evoked response (BAER). III: Additivity of click level and rate with noise level
,”
J. Acoust. Soc. Am.
88
,
2222
2234
.
13.
Burkard
,
R. F.
, and
Don
,
M.
(
2007
). “
The auditory brainstem response
,” in
Auditory Evoked Potentials: Basic Principles and Clinical Application
, edited by
R. F.
Burkard
,
M.
Don
, and
J. J.
Eggermont
(
Lippincott Williams & Wilkins
,
Philadelphia, PA
), pp.
229
253
.
14.
Cox
,
L. C.
(
1985
). “
Infant assessment: Developmental and age-related considerations
,” in
The Auditory Brainstem Response
, edited by
J.
Jacobson
(
College-Hill Press
,
San Diego, CA
), pp.
297
316
.
15.
Davis
,
H.
,
Hirsh
,
S. K.
,
Popelkaa
,
G. R.
, and
Formby
,
C.
(
1984
). “
Frequency selectivity and thresholds of brief stimuli suitable for electric response audiometry
,”
Audiology
23
,
59
74
.
16.
Don
,
M.
, and
Eggermont
,
J. J.
(
1978
). “
Analysis of the click-evoked brainstem potentials in man using high-pass noise masking
,”
J. Acoust. Soc. Am.
63
,
1084
1092
.
17.
Eggermont
,
J. J.
, and
Don
,
M.
(
1980
). “
Analysis of the click-evoked brainstem potentials in humans using high-pass noise masking. II. Effect of click intensity
,”
J. Acoust. Soc. Am.
68
,
1671
1675
.
18.
Elberling
,
C.
, and
Wahlgreen
,
O.
(
1985
). “
Estimation of auditory brainstem response, ABR, by means of Bayesian inference
,”
Scand. Audiol.
14
,
89
96
.
19.
Fay
,
R. R.
(
1988
).
Hearing in Vertebrates: A Psychophysics Handbook
(
Hill-Fay Associates
,
Winnetka, IL
),
621
pp.
20.
Finneran
,
J. J.
(
2008
). “
Evoked Response Study Tool (EVREST) User's Guide
,” SSC San Diego Technical Document 3226 (SSC San Diego, San Diego, CA),
84
pp.
21.
Finneran
,
J. J.
(
2009
). “
Evoked response study tool: A portable, rugged system for single and multiple auditory evoked potential measurements
,”
J. Acoust. Soc. Am.
126
,
491
500
.
22.
Finneran
,
J. J.
,
Mulsow
,
J.
, and
Houser
,
D. S.
(
2013
). “
Auditory evoked potentials in a bottlenose dolphin during moderate-range echolocation tasks
,”
J. Acoust. Soc. Am.
134
,
4532
4547
.
23.
Fowler
,
C.
, and
Durrant
,
J.
(
1994
). “
The effects of peripheral hearing loss on the auditory brainstem response
,” in
Principles & Applications in Auditory Evoked Potentials
, edited by
J.
Jacobson
(
Allyn and Bacon
,
Boston, MA
), pp.
237
250
.
24.
Galambos
,
R.
, and
Hecox
,
K. E.
(
1978
). “
Clinical applications of the auditory brain stem response
,”
Otolaryngol. Clin. North Am.
11
,
709
722
.
25.
Gasser-Rutledge
,
K. L.
,
Houser
,
D. S.
, and
Finneran
,
J. J.
(
2016
). “
Relating click-evoked auditory brainstem response waveforms to hearing loss in the bottlenose dolphin (Tursiops truncatus)
,”
Aquat. Mammal.
42
,
339
349
.
26.
Hall
,
J. W.
(
2007
).
New Handbook of Auditory Evoked Responses
(
Pearson
,
New York
),
736
pp.
27.
Hecox
,
K.
,
Patterson
,
J.
, and
Birman
,
M.
(
1989
). “
Effects of broadband noise on the human brainstem auditory evoked responses
,”
Ear Hear.
10
,
346
353
.
28.
Heffner
,
R. S.
, and
Heffner
,
H. E.
(
1992
). “
Evolution of sound localization in mammals
,” in
The Evolutionary Biology of Hearing
, edited by
D. B.
Webster
,
A. N.
Popper
, and
R. R.
Fay
(
Springer
,
New York
), pp.
691
715
.
29.
Hoke
,
M.
,
Ross
,
B.
,
Wickesberg
,
R.
, and
Lutkenhoner
,
B.
(
1984
). “
Weighted averaging—Theory and application to electric response audiometry
,”
Electroen. Clin. Neuro.
57
,
484
489
.
30.
Houser
,
D. S.
, and
Finneran
,
J. J.
(
2006
). “
Variation in the hearing sensitivity of a dolphin population obtained through the use of evoked potential audiometry
,”
J. Acoust. Soc. Am.
120
,
4090
4099
.
31.
Huang
,
C.-M.
(
1980
). “
A comparative study of the brain stem auditory response in mammals
,”
Brain Res.
184
,
215
219
.
32.
Johnson
,
C. S.
(
1966
). “
Auditory thresholds of the bottlenosed porpoise (Tursiops truncatus, Montagu)
,” U.S. Naval Ordnance Test Station, NOTS TP 4178, China Lake.
33.
Li
,
S.
,
Nachtigall
,
P. E.
, and
Breese
,
M.
(
2011
). “
Dolphin hearing during echolocation: Evoked potential responses in an Atlantic bottlenose dolphin (Tursiops truncatus)
,”
J. Exp. Biol.
214
,
2027
2035
.
34.
Li
,
S.
,
Wang
,
D.
,
Wang
,
K.
,
Hoffmann-Kuhnt
,
M.
,
Fernando
,
N.
,
Taylor
,
E. A.
,
Lin
,
W.
,
Chen
,
J.
, and
Ng
,
T.
(
2013
). “
Possible age-related hearing loss (presbycusis) and corresponding change in echolocation parameters in a stranded Indo-Pacific humpback dolphin
,”
J. Exp. Biol.
216
,
4144
4153
.
35.
Linnenschmidt
,
M.
,
Beedholm
,
K.
,
Wahlberg
,
M.
,
Højer-Kristensen
,
J.
, and
Nachtigall
,
P. E.
(
2012
). “
Keeping returns optimal: Gain control exerted through sensitivity adjustments in the harbour porpoise auditory system
,”
Proc. R. Soc. B
279
,
2237
2245
.
36.
Mann
,
D.
,
Hill-Cook
,
M.
,
Manire
,
C.
,
Greenhow
,
D.
,
Montie
,
E.
,
Powell
,
J.
,
Wells
,
R.
,
Bauer
,
G.
,
Cinningham-Smith
,
P.
,
Lingenfelser
,
R.
,
DiGiovanni
,
R.
, Jr.
,
Stone
,
A.
,
Brodsky
,
M.
,
Stevens
,
R.
,
Kieffer
,
G.
, and
Hoetjes
,
P.
(
2010
). “
Hearing loss in stranded odontocete dolphins and whales
,”
PLoS One
5
,
1
5
.
37.
Moore
,
P. W. B.
, and
Au
,
W. W. L.
(
1975
). “
Underwater localization of pulsed pure tones by the California sea lion (Zalophus californianus)
,”
J. Acoust. Soc. Am.
58
,
721
727
.
38.
Mulsow
,
J.
,
Houser
,
D. S.
, and
Finneran
,
J. J.
(
2014
). “
Aerial hearing thresholds and detection of hearing loss in male California sea lions (Zalophus californianus) using auditory evoked potentials
,”
Mar. Mammal Sci.
30
,
1383
1400
.
39.
Popov
,
V.
, and
Supin
,
A. Ya.
(
1990
). “
Electrophysiological studies of hearing in some cetaceans and a manatee
,” in
Sensory Abilities in Cetaceans
, edited by
J. A.
Thomas
and
R. A.
Kastelein
(
Plenum Press
,
New York
), pp.
405
415
.
40.
Popper
,
A. N.
, and
Fay
,
R. R.
(
2005
).
Sound Source Localization
(
Springer
,
New York
),
330
pp.
41.
R Core Team
(
2015
). “
R: A language and environment for statistical computing
,” R Foundation for Statistical Computing, Vienna, Austria. Available: www.R-project.org.
42.
Ridgway
,
S. H.
,
Bullock
,
T. H.
,
Carder
,
D. A.
,
Seeley
,
R. L.
,
Woods
,
D.
, and
Galambos
,
R.
(
1981
). “
Auditory brainstem response in dolphins
,”
Proc. Nat. Acad. Sci. U.S.A.
78
,
1943
1947
.
43.
Simmons
,
J. A.
,
Ferragamo
,
M.
,
Moss
,
C. F.
,
Stevenson
,
S. B.
, and
Altes
,
R. A.
(
1990a
). “
Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: The shape of target images in echolocation
,”
J. Comp. Physiol. A
167
,
589
616
.
44.
Simmons
,
J. A.
,
Moss
,
C. F.
, and
Ferragamo
,
M.
(
1990b
). “
Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus
,”
J. Comp. Physiol. A
166
,
449
470
.
45.
Stapells
,
D. R.
, and
Picton
,
T. W.
(
1981
). “
Technical aspects of brainstem evoked potential audiometry using tones
,”
Ear Hear.
2
,
20
29
.
46.
Supin
,
A. Ya.
, and
Nachtigall
,
P. E.
(
2013
). “
Gain control in the sonar of odontocetes
,”
J. Comp. Physiol. A
199
,
471
478
.
47.
Supin
,
A. Ya.
,
Nachtigall
,
P. E.
,
Pawloski
,
J.
, and
Au
,
W. W. L.
(
2003
). “
Evoked potential recording during echolocation in a false killer whale Pseudorca crassidens
,”
J. Acoust. Soc. Am.
113
,
2408
2411
.
48.
Supin
,
A. Ya.
,
Popov
,
V. V.
, and
Mass
,
A. M.
(
2001
).
The Sensory Physiology of Aquatic Mammals
(
Kluwer Academic Publishers
,
Boston, MA
),
332
pp.
You do not currently have access to this content.