Auditory models have been developed for decades to simulate characteristics of the human auditory system, but it is often unknown how well auditory models compare to each other or perform in tasks they were not primarily designed for. This study systematically analyzes predictions of seven publicly-available cochlear filter models in response to a fixed set of stimuli to assess their capabilities of reproducing key aspects of human cochlear mechanics. The following features were assessed at frequencies of 0.5, 1, 2, 4, and 8 kHz: cochlear excitation patterns, nonlinear response growth, frequency selectivity, group delays, signal-in-noise processing, and amplitude modulation representation. For each task, the simulations were compared to available physiological data recorded in guinea pigs and gerbils as well as to human psychoacoustics data. The presented results provide application-oriented users with comprehensive information on the advantages, limitations and computation costs of these seven mainstream cochlear filter models.

1.
Aertsen
,
A. M. J. H.
, and
Johannesma
,
P. I. M.
(
1980
). “
Spectro-temporal receptive fields of auditory neurons in the grassfrog. I. Characterisation of tonal and natural stimuli
,”
Biol. Cybern.
38
,
223
234
.
2.
Allen
,
J. B.
, and
Neely
,
S.
(
1992
). “
Micromechanics of the cochlea
,”
Phys. Today
45
(
7
),
40
47
.
3.
Altoè
,
A.
,
Pulkki
,
V.
, and
Verhulst
,
S.
(
2014
). “
Transmission-line cochlear models: Improved accuracy and efficiency
,”
J. Acoust. Soc. Am.
136
,
EL302
.
4.
Brandmeyer
,
A.
,
Lyon
,
R. F.
, and
Weiss
,
R.
(
2015
). “
Cascade of asymmetric resonators with fast-acting compression cochlear model
,” https://github.com/google/carfac (Last viewed 12/23/2015).
5.
Cooper
,
N. P.
(
1998
). “
Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea
,”
J. Physiol.
509
(
1
),
277
288
.
6.
Dau
,
T.
,
Püschel
,
D.
, and
Kohlrausch
,
A.
(
1996
). “
A quantitative model of the ‘effective’ signal processing in the auditory system: I. Model structure
,”
J. Acoust. Soc. Am.
99
,
3615
3622
.
7.
de Boer
,
E.
(
1975
). “
Synthetic whole-nerve action potentials for the cat
,”
J. Acoust. Soc. Am.
58
,
1030
1045
.
8.
de Boer
,
E.
, and
Nuttall
,
A. L.
(
2000
). “
The mechanical waveform of the basilar membrane. III. Intensity effects
,”
J. Acoust. Soc. Am.
107
,
1497
1507
.
9.
Dietz
,
M.
,
Ewert
,
S. D.
,
Hohmann
,
V.
, and
Kollmeier
,
B.
(
2008
). “
Coding of temporally fluctuating interaural timing disparities in a binaural processing model based on phase differences
,”
Brain Res.
1220
,
234
245
.
10.
Eustaquio-Martin
,
A.
, and
Lopez-Poveda
,
E. A.
(
2011
). “
Isoresponse versus isoinput estimates of cochlear filter tuning
,”
J. Assoc. Res. Otolaryngol.
12
(
3
),
281
299
.
11.
Fettiplace
,
R.
, and
Hackney
,
C. M.
(
2006
). “
The sensory and motor roles of auditory hair cells
,”
Nat. Rev. Neurosci.
7
,
19
29
.
12.
Fletcher
,
H.
(
1940
). “
Auditory patterns
,”
Rev. Mod. Phys.
12
,
47
58
.
13.
Freeman
,
R. L.
(
2005
). “
Phase distortion
,” in
Fundamentals of Telecommunications
, 2nd ed. (
IEEE Press
,
London
), pp.
46
48
.
14.
French
,
N. R.
, and
Steinberg
,
J. C.
(
1947
). “
Factors governing the intelligibility of speech sounds
,”
J. Acoust. Soc. Am.
19
,
90
119
.
15.
Gaudrain
,
E.
,
Patterson
,
R.
,
Bleeck
,
S.
, and
Walters
,
T.
(
2015
). “
AIM-MAT: Audiotory Image Model
,” https://code.soundsoftware.ac.uk/projects/aimmat (Last viewed 12/23/2015).
16.
Ghaffari
,
R.
,
Aranyosi
,
A. J.
, and
Freeman
,
D. M.
(
2007
). “
Longitudinally propagating traveling waves of the mammalian tectorial membrane
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
16510
16515
.
17.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
1990
). “
Derivation of auditory filter shapes from notched-noise data
,”
Hear. Res.
47
,
103
138
.
18.
Green
,
M. D.
(
1958
). “
Detection of complex auditory signals in noise, and the critical band concept
,” Electronic Defense Group, University of Michigan,
Technical Report No. 82
.
19.
Greenwood
,
D. D.
(
1990
). “
A cochlear frequency-position function for several species—29 years later
,”
J. Acoust. Soc. Am.
87
,
2592
2605
.
20.
Helmholtz
,
H. L. F.
(
1885
).
On the Sensations of Tone as a Physiological Basis for the Theory of Music
, 2nd English ed., translated by Alexander J. Ellis (
Longmans, Green, and Co.
,
London
), pp.
1
44
.
21.
Hemmert
,
W.
,
Holmberg
,
M.
, and
Ramacher
,
U.
(
2005
). “
Temporal sound processing by cochlear nucleus octopus neurons
,”
Lect. Notes Comput. Sci.
3696
,
583
588
.
22.
Hohmann
,
V.
(
2002
). “
Frequency analysis and synthesis using a Gammatone filterbank
,”
Acta Acust.
88
,
433
442
.
23.
Irino
,
T.
, and
Patterson
,
R. D.
(
2006
). “
A dynamic compressive Gammachirp auditory filterbank
,”
IEEE Trans Audio Speech Lang Process.
14
(
6
),
2222
2232
.
24.
Jenkins
,
G. M.
, and
Watts
,
D. G.
(
1968
). “
Fourier transform
,” in
Spectral Analysis and its Applications
(
Holden Day
,
San Francisco
), pp.
8
38
.
25.
Jepsen
,
M. L.
,
Ewert
,
S. D.
, and
Torsten
,
D.
(
2008
). “
A computational model of human auditory signal processing and perception
,”
J. Acoust. Soc. Am.
124
(
1
),
422
438
.
26.
Kalluri
,
R.
, and
Shera
,
C. A.
(
2007
). “
Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions
,”
J. Acoust. Soc. Am.
121
,
2097
2110
.
27.
Kemp
,
D. T.
(
1978
). “
Stimulated acoustic emissions from within the human auditory system
,”
J. Acoust. Soc. Am.
64
(
5
),
1386
1391
.
28.
Liu
,
Y. W.
, and
Neely
,
S. T.
(
2010
). “
Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells
,”
J. Acoust. Soc. Am.
127
,
2420
2432
.
29.
Lopez-Poveda
,
E. A.
, and
Meddis
,
R.
(
2001
). “
A human nonlinear cochlear filterbank
,”
J. Acoust. Soc. Am.
110
(
6
),
3107
3118
.
30.
Lopez-Poveda
,
E. A.
,
Plack
,
C. J.
, and
Meddis
,
R.
(
2003
). “
Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing
,”
J. Acoust. Soc. Am.
113
(
2
),
951
960
.
77.
Lorenzi
,
C.
,
Sibellas
,
J.
,
Fullgrabe
,
C.
,
Gallego
,
S.
,
Fugain
,
C.
, and
Meyer
,
B.
(
2004
). “
Effects of amplitude compression on first- and second-order modulation detection thresholds in cochlear implant listeners
,”
Int. J. Audiol.
43
(
5
),
246
270
.
31.
Luxon
,
L.
,
Furman
,
J. M.
,
Martini
,
A.
,
Dafydd
,
S.
, and
Stephens
,
G.
(
2003
). “
Clinical and audiometric assessment of hearing
,” in
Textbook of Audiological Medicine: Clinical Aspects of Hearing and Balance
, edited by
L.
Luxon
(
Taylor and Francis
,
London
), pp.
477
494
.
32.
Lyon
,
R. F.
(
2011
). “
Cascades of two-pole–two-zero asymmetric resonators are good models of peripheral auditory function
,”
J. Acoust. Soc. Am.
130
(
6
),
3893
3904
.
33.
Lyon
,
R. F.
,
Katsiamis
,
A. G.
, and
Drakakis
,
E. M.
(
2010
). “
History and future of auditory filter models
,”
Proc. IEEE Int. Symp. Circ. Syst.
978
(
1
),
3809
3812
.
34.
Meaud
,
J.
, and
Lemons
,
C.
(
2015
). “
A physiologically-based time domain model of the mammalian ear
,” in
Mechanics of Hearing: Protein to Perception
, edited by
D.
Karavitaki
and
D.
Corey
, Proceedings of the 12th International Workshop on the Mechanics of Hearing (
American Institute of Physics
,
Melville, NY
), Vol. 1703, No. 1, p.
070009
.
35.
Meddis
,
R.
, and
Lopez-Poveda
,
E. A.
(
2010
). “
Peripheral auditory system: From pinna to auditory nerve
,” in
Computational Models of the Auditory System
, edited by
R.
Meddis
,
E. A.
Lopez-Poveda
,
A. N.
Popper
, and
R. R.
Fay
, Vol. 35 of
Springer Handbook of Auditory Research
(
Springer
,
New York
), pp.
7
38
.
36.
Meddis
,
R.
,
O'Mard
,
L. P.
, and
Lopez-Poveda
,
E. A.
(
2001
). “
A computational algorithm for computing nonlinear auditory frequency selectivity
,”
J. Acoust. Soc. Am.
109
,
2852
2861
.
37.
Moradi
,
S.
,
Lidestam
,
B.
,
Saremi
,
A.
, and
Rönnberg
,
J.
(
2014
). “
Gated auditory speech perception: Effects of listening conditions and cognitive capacity
,”
Front. Psychol.
5
,
531
.
38.
Oppenheim
,
A. V.
,
Willsky
,
L. S.
, and
Nawab
,
S. H.
(
2014
). “
Time- and frequency characterization of signals and systems
,” in
Signals and Systems
, 2nd ed. (
Pearson Education
,
Upper Saddle River, NJ
), pp.
427
519
.
39.
Oxenham
,
A. J.
, and
Shera
,
C. A.
(
2003
). “
Estimates of human cochlear tuning at low levels using forward and simultaneous masking
,”
J. Assoc. Res. Otolaryngol.
4
,
541
554
.
40.
Oxenham
,
A. J.
, and
Simonson
,
A. M.
(
2006
). “
Level dependence of auditory filters in nonsimultaneous masking as a function of frequency
,”
J. Acoust. Soc. Am.
119
,
444
453
.
41.
Patterson
,
R. D.
(
1976
). “
Auditory filter shapes derived with noise stimuli
,”
J. Acoust. Soc. Am.
59
,
640
654
.
42.
Patterson
,
R. D.
, and
Moore
,
B. C. J.
(
1986
). “
Auditory filters and excitation patterns as representations of frequency resolution
,” in
Frequency Selectivity in Hearing
, edited by
B. C. J.
Moore
(
Academic
,
London
), pp.
123
177
.
43.
Plack
,
C. J.
, and
Oxenham
,
A. J.
(
2000
). “
Basilar-membrane nonlinearity estimated by pulsation threshold
,”
J. Acoust. Soc. Am.
107
,
501
507
.
44.
Ramamoorthy
,
S.
,
Deo
,
N. V.
, and
Grosh
,
K.
(
2007
). “
A mechano-electro-acoustical model for the cochlea: Response to acoustic stimuli
,”
J. Acoust. Soc. Am.
121
,
2758
2773
.
45.
Recio
,
A.
,
Rich
,
N. C.
,
Narayan
,
S. S.
, and
Ruggero
,
M. A.
(
1998
). “
Bailar-membrane responses to clicks at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
103
(
4
),
1972
1989
.
46.
Recio-Spinoso
,
A.
, and
Rhode
,
W. S.
(
2015
). “
Fast waves at the base of the cochlea
,”
PLoS One
10
(
6
),
e0129556
.
47.
Remme
,
M. W. H.
,
Donato
,
R.
,
Mikiel-Hunter
,
J.
,
Ballestero
,
J. A.
,
Foster
,
S.
,
Rinzel
,
J.
, and
McAlpine
,
D.
(
2014
). “
Subthreshold resonance properties contribute to the efficient coding of auditory spatial cues
,”
Proc. Natl. Acad. Sci. U.S.A.
111
(
22
),
2339
2348
.
48.
Ren
,
T.
(
2002
). “
Longitudinal pattern of basilar membrane vibration in the sensitive cochlea
,”
Proc. Natl. Acad. Sci. U.S.A.
99
(
26
),
17101
17106
.
49.
Rhode
,
W. S.
, and
Cooper
,
N. P.
(
1996
). “
Nonlinear mechanics in the apical turn of the Chinchilla cochlea in vivo
,”
Audit. Neurosci.
3
,
101
121
.
50.
Rhode
,
W. S.
, and
Robles
,
L.
(
1974
). “
Evidence from Mössbauer experiments for nonlinear vibration in the cochlea
,”
J. Acoust. Soc. Am.
55
,
588
596
.
51.
Robles
,
L.
, and
Ruggero
,
M. A.
(
2001
). “
Mechanics of the mammalian cochlea
,”
Physiol. Rev.
81
,
1305
1352
.
52.
Robles
,
L.
,
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1986
). “
Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input–output functions, tuning curves, and response phases
,”
J. Acoust. Soc. Am.
80
(
5
),
1364
1374
.
53.
Rønne
,
F.
,
Harte
,
J.
,
Elberling
,
C.
, and
Dau
,
T.
(
2012
). “
Modeling auditory evoked brainstem responses to transient stimuli
,”
J. Acoust. Soc. Am.
131
(
5
),
3903
3913
.
54.
Ruggero
,
M. A.
,
Nola
,
C. R.
,
Recio
,
A.
,
Narayan
,
S. S.
, and
Robles
,
L.
(
1997
). “
Basilar membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
(
4
),
2151
2163
.
55.
Russel
,
I. J.
, and
Nilsen
,
K. E.
(
1997
). “
The location of the cochlear amplifier: Spatial representation of a single tone on the guinea pig basilar membrane
,”
Proc. Natl. Acad. Sci.
94
,
2660
2664
.
56.
Saremi
,
A.
(
2015
). “
A biophysical model of the mammalian cochlear mechanics
,” http://www.tekniska-solutions.com/download.html (Last viewed 12/23/2015).
57.
Saremi
,
A.
, and
Stenfelt
,
S.
(
2013
). “
Effects of metabolic presbyacusis on cochlear responses: A simulation approach using a physiologically-based model
,”
J. Acoust. Soc. Am.
134
(
4
),
2833
2852
.
58.
Schmidt
,
A. K. D.
,
Reide
,
K.
, and
Römer
,
H.
(
2014
). “
High background noise shapes selective auditory filters in a tropical cricket
,”
J. Exp. Biol.
214
,
1754
1762
.
59.
Shera
,
C. A.
(
2001
). “
Intensity-invariance of fine time structure in basilar-membrane click responses: Implications for cochlear mechanics
,”
J. Acoust. Soc. Am.
110
(
1
),
332
348
.
60.
Shera
,
C. A.
,
Guinan
,
J. J.
, and
Oxenham
,
A. J.
(
2010
). “
Otoacoustic estimation of cochlear tuning: Validation in the Chinchilla
,”
J. Assoc. Res. Otolaryngol.
11
,
343
365
.
61.
Søndergaard
,
P.
, and
Majdak
,
P.
(
2013
). “
The Auditory Modeling Toolbox
,” in
The Technology of Binaural Listening
, edited by
J.
Blauert
(
Springer
,
Berlin
), pp.
33
56
.
62.
Stevens
,
S. S.
(
1975
).
Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects
(
Wiley
,
New York
), pp.
1
329
.
63.
Unoki
,
M.
,
Irino
,
T.
,
Glasberg
,
B.
,
Moore
,
B. C. J.
, and
Patterson
,
R. D.
(
2006
). “
Comparison of the roex and gammachirp filters as representations of the auditory filter
,”
J. Acoust. Soc. Am.
120
,
1474
1492
.
64.
Verhulst
,
S.
,
Bharadwaj
,
H. M.
,
Mahraei
,
G.
,
Shera
,
C. A.
, and
Shinn-Cunningham
,
B.
(
2015
). “
Functional modeling of the human auditory brainstem response to broadband stimulation
,”
J. Acoust. Soc. Am.
138
,
1637
1659
.
65.
Verhulst
,
S.
,
Dau
,
T.
, and
Shera
,
C. A.
(
2012
). “
Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission
,”
J. Acoust. Soc. Am.
132
(
6
),
3842
3848
.
66.
von Békésy
,
G.
(
1960
). “
Part 4: Cochlear mechanics
,” in
Experiments in the Hearing
(
McGraw-Hill
,
New York
), pp.
403
703
.
67.
Wegel
,
R. L.
, and
Lane
,
C. E.
(
1924
). “
The auditory masking of one sound by another and its probable relation to the dynamics of the inner ear
,”
Phys. Rev.
23
,
266
285
.
68.
Zhang
,
X.
,
Heinz
,
M. G.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2001
). “
A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression
,”
J. Acoust. Soc. Am.
109
(
2
),
648
670
.
69.
Zilany
,
M. S.
, and
Bruce
,
I. C.
(
2006
). “
Representation of the vowel ε in normal and impaired nerve fibers: Model predictions of responses in cats
,”
J. Acoust. Soc. Am.
122
(
1
),
402
417
.
70.
Zilany
,
M. S.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2014
). “
Updated parameters and expanded simulation options for a model of the auditory periphery
,”
J. Acoust. Soc. Am.
135
,
283
286
.
71.
Zinn
,
C.
,
Maier
,
H.
,
Zenner
,
H. P.
, and
Gummer
,
A. W.
(
2000
). “
Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in-vivo guinea-pig cochlea
,”
Hear. Res.
142
,
159
183
.
72.
Ziska
,
P.
, and
Laipert
,
M.
(
2006
). “
Band-pass filter group delay equalization
,” in
Proceedings of the 38th Symposium on Signal Theory
, pp.
483
487
.
73.
Zweig
,
G.
(
1991
). “
Finding the impedance of the organ of Corti
,”
J. Acoust. Soc. Am.
89
(
3
),
1229
1254
.
74.
Zweig
,
G.
,
Lipes
,
R.
, and
Pierce
,
J. R.
(
1976
). “
The cochlear compromise
,”
J. Acoust. Soc. Am.
59
,
975
982
.
75.
Zwicker
,
E.
(
1985
). “
Temporal resolution in background noise
,”
Br. J. Audiol.
19
(
1
),
9
12
.
You do not currently have access to this content.