Accurate modeling of acoustic propagation in the ocean waveguide is important to SONAR-performance prediction. Particularly in shallow waters, a crucial contribution to the total transmission loss is the bottom refection loss, which can be estimated passively by beamforming the natural surface-noise acoustic field recorded by a vertical line array of hydrophones. However, the performance in this task of arrays below 2 m of length is problematic for frequencies below 10kHz It is shown in this paper that, when the data are free of interference from sources other than wind and wave surface noise, data from a shorter array can be used to approximate the coherence function of a longer array. This improves the angular resolution of the estimated bottom loss, often making use of data at frequencies above the array design frequency. Application to simulated and experimental data shows that the technique, rigorously justified for a halfspace bottom, is effective also on more complex bottom types. Dispensing with active sources, small autonomous underwater vehicles equipped with short arrays can be envisioned as compact, efficient seabed-characterization systems. The proposed technique is shown to improve significantly the reflection-loss estimate of an array that would be a candidate for such application.

1.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
, “
Fundamentals of ocean acoustics
,” in
Computational Ocean Acoustics (Modern Acoustics and Signal Processing
), 2nd ed. (
Springer
,
New York
,
2011
), Chap. 1, pp.
38
50
.
2.
R.
Hamson
, “
The modelling of ambient noise due to shipping and wind sources in complex environments
,”
Appl. Acoust.
51
,
251
287
(
1997
).
3.
E. L.
Hamilton
, “
Geoacoustic modeling of the sea floor
,”
J. Acoust. Soc. Am.
68
,
1313
1340
(
1980
).
4.
E. L.
Hamilton
and
R. T.
Bachman
, “
Sound velocity and related properties of marine sediments
,”
J. Acoust. Soc. Am.
72
,
1891
1904
(
1982
).
5.
C.
Ferla
and
F. B.
Jensen
, “
Are current environmental databases adequate for sonar predictions in shallow water?,”
in
Impact of Littoral Environmental Variability on Acoustic Predictions and Sonar Performance
, edited by
N. G.
Pace
and
F. B.
Jensen
(
Springer Science+Business Media, Dordrecht
,
the Netherlands
,
2002
), pp.
555
562
.
6.
S. E.
Dosso
,
M. L.
Yeremy
,
J. M.
Ozard
, and
N. R.
Chapman
, “
Estimation of ocean-bottom properties by matched-field inversion of acoustic field data
,”
IEEE J. Ocean. Eng.
18
,
232
239
(
1993
).
7.
A.
Caiti
,
S. M.
Jesus
, and
Å.
Kristensen
, “
Geoacoustic seafloor exploration with a towed array in a shallow water area of the Strait of Sicily
,”
IEEE J. Ocean. Eng.
21
,
355
366
(
1996
).
8.
M.
Siderius
,
P. L.
Nielsen
, and
P.
Gerstoft
, “
Range-dependent seabed characterization by inversion of acoustic data from a towed receiver array
,”
J. Acoust. Soc. Am.
112
,
1523
1535
(
2002
).
9.
C. H.
Harrison
and
D. G.
Simons
, “
Geoacoustic inversion of ambient noise: A simple method
,”
J. Acoust. Soc. Am.
112
,
1377
1389
(
2002
).
10.
M.
Siderius
and
C.
Harrison
, “
High-frequency geoacoustic inversion of ambient noise data using short arrays
,” in High Frequency Ocean Acoustics Conference, edited by
M. B.
Porter
,
M.
Siderius
, and
W. A.
Kuperman
,
AIP Conf. Proc.
728
,
22
31
(
2004
).
11.
L.
Muzi
,
M.
Siderius
,
J.
Quijano
, and
S.
Dosso
, “
High-resolution bottom-loss estimation using the ambient-noise vertical coherence function
,”
J. Acoust. Soc. Am.
137
,
481
491
(
2015
).
12.
M.
Siderius
,
L.
Muzi
,
C. H.
Harrison
, and
P.
Nielsen
, “
Synthetic array processing of ocean ambient noise for higher resolution seabed bottom loss estimation
,”
J. Acoust. Soc. Am.
133
,
EL149
EL155
(
2013
).
13.
J. E.
Quijano
,
S. E.
Dosso
,
M.
Siderius
, and
L.
Muzi
, “
Coherence extrapolation for underwater ambient noise
,”
J. Acoust. Soc. Am.
135
,
EL318
EL323
(
2014
).
14.
P. L.
Nielsen
,
M.
Siderius
, and
L.
Muzi
, “
Performance assessment of a short hydrophone array for seabed characterization using natural-made ambient noise
,”
J. Acoust. Soc. Am.
136
,
2155
(
2014
).
15.
C. H.
Harrison
, “
Sub-bottom profiling using ocean ambient noise
,”
J. Acoust. Soc. Am.
115
,
1505
1515
(
2004
).
16.
J. E.
Quijano
,
S. E.
Dosso
,
J.
Dettmer
,
L. M.
Zurk
,
M.
Siderius
, and
C. H.
Harrison
, “
Bayesian geoacoustic inversion using wind-driven ambient noise
,”
J. Acoust. Soc. Am.
131
,
2658
2667
(
2012
).
17.
C. H.
Harrison
and
M.
Siderius
, “
Bottom profiling by correlating beam-steered noise sequences
,”
J. Acoust. Soc. Am.
123
,
1282
1296
(
2008
).
18.
G. B.
Deane
,
M. J.
Buckingham
, and
T.
Tindle
, “
Vertical coherence of ambient noise in shallow water overlying a fluid seabed
,”
J. Acoust. Soc. Am.
102
,
3413
3424
(
1997
).
19.
W. S.
Liggett
and
M. J.
Jacobson
, “
Noise covariance and vertical directivity in a deep ocean
,”
J. Acoust. Soc. Am.
39
,
280
288
(
1966
).
20.
D. R.
Barclay
and
M. J.
Buckingham
, “
Depth dependence of wind-driven, broadband ambient noise in the Philippine Sea
,”
J. Acoust. Soc. Am.
133
,
62
71
(
2013
).
21.
M. J.
Buckingham
, “
A theoretical model of ambient noise in a low-loss, shallow water channel
,”
J. Acoust. Soc. Am.
67
,
1186
1192
(
1980
).
22.
B. F.
Cron
and
C. H.
Sherman
, “
Spatial-correlation functions for various noise models
,”
J. Acoust. Soc. Am.
34
,
1732
1736
(
1962
).
23.
H.
Cox
, “
Spatial correlation in arbitrary noise fields with application to ambient sea noise
,”
J. Acoust. Soc. Am.
54
,
1289
1301
(
1973
).
24.
W. A.
Kuperman
and
F.
Ingenito
, “
Spatial correlation of surface generated noise in a stratified ocean
,”
J. Acoust. Soc. Am.
67
,
1988
1996
(
1980
).
25.
H.
Nakahara
, “
A systematic study of theoretical relations between spatial correlation and Green's function in one-, two- and three-dimensional random scalar wavefields
,”
Geophys. J. Int.
167
,
1097
1105
(
2006
).
26.
S. C.
Walker
and
M. J.
Buckingham
, “
Spatial coherence and cross correlation of three-dimensional ambient noise fields in the ocean
,”
J. Acoust. Soc. Am.
131
,
1079
1086
(
2012
).
27.
C. H.
Harrison
, “
Formulas for ambient noise level and coherence
,”
J. Acoust. Soc. Am.
99
,
2055
2066
(
1996
).
28.
C. H.
Harrison
, “
Noise directionality for surface sources in range-dependent environments
,”
J. Acoust. Soc. Am.
102
,
2655
2662
(
1997
).
29.
H.
Schmidt
, OASES Version 3.1,
User Guide and Reference Manual
(
Massachusetts Institute of Technology
,
Cambridge, MA
,
2004
).
You do not currently have access to this content.