Sound propagation of wind farms is typically simulated by the use of engineering tools that are neglecting some atmospheric conditions and terrain effects. Wind and temperature profiles, however, can affect the propagation of sound and thus the perceived sound in the far field. A better understanding and application of those effects would allow a more optimized farm operation towards meeting noise regulations and optimizing energy yield. This paper presents the parabolic equation (PE) model development for accurate wind turbine noise propagation. The model is validated against analytic solutions for a uniform sound speed profile, benchmark problems for nonuniform sound speed profiles, and field sound test data for real environmental acoustics. It is shown that PE provides good agreement with the measured data, except upwind propagation cases in which turbulence scattering is important. Finally, the PE model uses computational fluid dynamics results as input to accurately predict sound propagation for complex flows such as wake flows. It is demonstrated that wake flows significantly modify the sound propagation characteristics.

1.
ISO 9613-2
, “
Acoustics attenuation of sound during propagation outdoors, Part 1: General method of calculation
” (International Standards Organization, Geneva, Switzerland,
1996
), pp.
1
24
.
2.
E.
Kalapinski
, “
Wind turbine acoustic modeling with the ISO 9613-2 standard: Methodologies to address constraints
,” in
Third International Conference on Wind Turbine Noise
, Aalborg, Denmark (
2009
).
3.
C. J.
Manning
, “
The propagation of noise from petroleum and petrochemical complexes to neighbouring communities
,” in
CONCAWE
(
2009
).
4.
R.
Nota
,
R.
Barelds
, and
D.
van Maercke
, “
Harmonoise WP 3 engineering method for road traffic and railway after validation and fine-tuning
,” in
HAR32TR=040922-DGMR20:DGMR
(
2005
).
5.
J. M.
Prospathopoulos
and
S. G.
Voutsinas
, “
Noise propagation issues in wind energy applications
,”
J. Solar Energy Eng.
127
,
234
241
(
2005
).
6.
J. M.
Prospathopoulos
and
S. G.
Voutsinas
, “
Application of a ray theory model to the prediction of noise emissions from isolated wind turbines and wind parks
,”
Wind Energy
10
,
103
119
(
2007
).
7.
D.
Heimann
,
Y.
Käsler
, and
G.
Günter
, “
The wake of a wind turbine and its influence on sound propagation
,”
Meteorol. Z.
20
(
4
),
449
460
(
2011
).
8.
F.
Dinapoli
and
R. L.
Deavenport
, “
Numerical models of underwater acoustic propagation
,” in
Ocean Acoustics
, edited by
J.
DeSanto
(
Springer
,
Berlin Heidelberg
,
1979
), Chap. 3.
9.
F.
Jensen
,
W.
Kuperman
,
M.
Porter
, and
H.
Schmidt
, “
Parabolic equations
,” in
Computational Ocean Acoustics
(
AIP
,
New York
,
1994
), Chap. 6.
10.
D.
Lee
,
A.
Pierce
, and
E.
Shang
, “
Parabolic equation development in the twentieth century
,”
J. Computat. Acoust.
8
,
527
637
(
2000
).
11.
F. D.
Tappert
, “
The parabolic approximation method
,” in
Wave Propagation and Underwater Acoustics
, edited by
J.
Keller
and
J.
Papadakis
(
Springer
,
Berlin Heidelberg
,
1977
), Chap. 5.
12.
K.
Gilbert
and
M.
White
, “
Application of the parabolic equation to sound propagation in a refracting atmosphere
,”
J. Acoust. Soc. Am.
85
,
630
637
(
1989
).
13.
R.
Cheng
,
P.
Morris
, and
K.
Brentner
, “
A three-dimensional parabolic equation method for sound propagation in moving inhomogeneous media
,”
J. Acoust. Soc. Am.
126
(
4
),
1700
1710
(
2009
).
14.
K.
Kaliski
and
K. D.
Wilson
, “
Improving predictions of wind turbine noise using PE modeling
,” in
NOISE-CON 2011
, Portland, OR (
2011
), pp.
1
13
.
15.
K.
Bolin
and
M.
Boué
, “
Long range sound propagation over a sea surface
,”
J. Acoust. Soc. Am
126
(
5
),
2191
2197
(
2009
).
16.
L.
Johansson
, “
Sound propagation around off-shore wind turbines: Long-range parabolic equation calculations for Baltic Sea conditions
,” Licentiate thesis,
Kungl Tekniska Högskolan
,
2003
, pp.
1
87
.
17.
L.
Mylonas
, “
Assessment of noise prediction methods over water for long range sound propagation of wind turbines
,” Master's thesis,
Uppsala University
,
2014
, pp.
1
105
.
18.
E. M.
Salomons
,
Computational Atmospheric Acoustics
(
Kluwer Academic
,
Amsterdam
,
2001
), pp.
1
327
.
19.
D.
Dragna
,
K.
Attenborough
, and
P.
Blanc-Benon
, “
On the inadvisability of using single parameter impedance models for representing the acoustical properties of ground surfaces
,”
J. Acoust. Soc. Am.
138
(
4
),
2399
2413
(
2015
).
20.
IEC61400-112006
, “
Wind turbine generator systems–Part II: Acoustic noise measurement techniques
,” 2nd ed.,
International Technical Commission, Geneva, 2002 plus Amendment, I.
2006
.
21.
H.
Møller
and
C. S.
Pedersen
, “
Low-frequency noise from large wind turbines
,”
J. Acoust. Soc. Am.
129
(
6
),
3727
3744
(
2011
).
22.
D.
Dragna
and
P.
Blanc-Benon
, “
Towards realistic simulations of sound radiation by moving sources in outdoor environments
,”
Int. J. Aeroacoust.
13
(
5–6
),
405
426
(
2014
).
23.
D.
Dragna
and
P.
Blanc-Benon
, “
Sound radiation by a moving line source above an impedance plane with frequency-dependent properties
,”
J. Sound Vib.
349
,
259
275
(
2015
).
24.
M. C.
Jacob
,
D.
Dragna
,
A.
Cahuzac
,
J.
Boudet
, and
P.
Blanc-Benon
, “
Towards hybrid CAA with ground effects
,”
Int. J. Aeroacoust.
13
(
3–4
),
235
260
(
2014
).
25.
S. N.
Vecherin
,
D. K.
Wilson
, and
V. E.
Ostashev
, “
Incorporating source directionality into outdoor sound propagation calculations
,”
J. Acoust. Soc. Am.
130
(
6
),
3608
3622
(
2011
).
26.
R.
Makarewicz
, “
Is a wind turbine a point source?
,”
J. Acoust. Soc. Am.
129
(
2
),
579
581
(
2011
).
27.
H.
Bass
,
L.
Sutherland
,
A.
Zuckerwar
, and
D.
Blackstock
, “
Atmospheric absorption of sound: Further developments
,”
J. Acoust. Soc. Am.
97
(
1
),
680
683
(
1995
).
28.
H.
Bass
,
L.
Sutherland
,
A.
Zuckerwar
, and
D.
Blackstock
, “
Erratum: Atmospheric absorption of sound: Further developments
,”
J. Acoust. Soc. Am.
99
(
2
),
1259
(
1996
).
29.
ISO 9613-1
: “Acoustics attenuation of sound during propagation outdoors, Part 1: Calculation of the absorption of sound by the atmosphere” (International Standards Organization, Geneva, Switzerland,
1993
), pp.
1
26
.
30.
K.
Attenborough
, “
Benchmark cases for outdoor sound propagation models
,”
J. Acoust. Soc. Am.
97
(
1
),
173
191
(
1995
).
31.
F.
Castellani
and
A.
Vignaroli
, “
An application of the actuator disc model for wind turbine wakes calculations
,”
Appl. Energy
101
,
432
440
(
2013
).
32.
P.-E.
Réthoré
,
P.
Van der Lann
,
N.
Troldborg
,
Z.
Frederik
, and
N. N.
Sørensen
, “
Verification and validation of an actuator disc model
,”
Wind Energy
17
(
6
),
919
937
(
2013
).
You do not currently have access to this content.