Various time-varying algorithms have been applied in multichannel sound systems to improve the system's stability and, among these, frequency shifting has been demonstrated to reach the maximum stability improvement achievable by time-variation in general. However, the modulation artifacts have been found to diminish the gain improvement unusable for a higher number of channels and high-quality applications such as music reproduction. This paper proposes alternatively time-varying mixing matrices, which is an efficient algorithm corresponding to symmetric up and down frequency shifting. It is shown with a statistical approach that time-varying mixing matrices can as well achieve maximum stability improvement for a higher number of channels. A listening test demonstrates the improved quality of time-varying mixing matrices over frequency shifting.

1.
A. J.
Berkhout
, “
A holographic approach to acoustic control
,”
J. Audio Eng. Soc.
36
(
12
),
977
995
(
1988
).
2.
H.
Kuttruff
,
Room Acoustics
, 5th ed. (
CRC Press
,
New York
,
2009
).
3.
K.
Yamaguchi
,
T.
Fujita
,
F.
Kawakami
, and
H.
Sotome
, “
Design of an auditorium where electroacoustic technology is fully available: Exhibition Hall of Yamaha Sportland TSUMAGOI
,”
J. Acoust. Soc. Am.
62
(
5
),
1213
1221
(
1977
).
4.
F.
Kawakami
and
Y.
Shimizu
, “
Active field control in auditoria
,”
Appl. Acoust.
31
,
47
75
(
1990
).
5.
A. J.
Berkhout
, “
Acoustic control by wave field synthesis
,”
J. Acoust. Soc. Am.
93
(
5
),
2764
2778
(
1993
).
6.
M. A.
Poletti
, “
An assisted reverberation system for controlling apparent room absorption and volume
,”
presented at the 101st Convention of the Audio Engineering Society
,
Los Angeles, CA
(
November 8–11, 1996
).
7.
T.
van Waterschoot
and
M.
Moonen
, “
Fifty years of acoustic feedback control: State of the art and future challenges
,”
Proc. IEEE
99
,
288
327
(
2011
).
8.
T.
van Waterschoot
and
M.
Moonen
, “
Assessing the acoustic feedback control performance of adaptive feedback cancellation in sound reinforcement systems
,” in
17th European Signal Processing Conference
,
Glasgow, Scotland
(
August 24–28, 2009
), pp.
1997
2001
.
9.
J. L.
Nielsen
and
U. P.
Svensson
, “
Performance of some linear time-varying systems in control of acoustic feedback
,”
J. Acoust. Soc. Am.
106
(
1
),
240
254
(
1999
).
10.
M. R.
Schroeder
, “
Improvement of feedback stability of public address systems by frequency shifting
,”
J. Audio Eng. Soc.
10
(
2
),
108
109
(
1962
).
11.
E.
Berdahl
and
D.
Harris
, “
Frequency shifting for acoustic howling suppression
,” in
Workshop on Digital Audio Effects
(
2010
).
12.
M. A.
Poletti
, “
The stability of multichannel sound systems with frequency shifting
,”
J. Acoust. Soc. Am.
116
(
2
),
853
871
(
2004
).
13.
P. U.
Svensson
, “
Computer simulations of periodically time-varying filters for acoustic feedback control
,”
J. Audio Eng. Soc.
43
(
9
),
667
677
(
1995
).
14.
D.
Griesinger
, “
Improving room acoustics through time-variant synthetic reverberation
,” in
Audio Engineering Society Convention
,
Paris, France
(February
1991
), pp.
1
10
.
15.
T.
Lokki
and
J.
Hiipakka
, “
A time-variant reverberation algorithm for reverberation enhancement systems
,” in
Workshop on Digital Audio Effects
, pp.
28
32
,
2001
.
16.
H.
Miyazaki
,
T.
Watanabe
,
S.
Kishinaga
, and
F.
Kawakami
, “
Active Field Control (AFC)—Reverberation enhancement system using acoustical feedback control
,” in
Audio Engineering Society Convention
, October
2003
, Vol.
115
, p.
2342
.
17.
S. J.
Schlecht
and
E. A. P.
Habets
, “
Reverberation enhancement systems with time-varying mixing matrices
,” in
59th International Conference of the Audio Engineering Society
, July
2015
.
18.
S. J.
Schlecht
and
E. A. P.
Habets
, “
Time-varying feedback matrices in feedback delay networks and their application in artificial reverberation
,”
J. Acoust. Soc. Am.
138
,
1389
1398
(
2015
).
19.
N. V.
Franssen
, “
The amplification of acoustic fields
,”
Acta Acust.
20
(
6
),
315
323
(
1968
).
20.
M. R.
Schroeder
, “
On frequency response curves in rooms. Comparison of experimental, theoretical, and Monte Carlo results for the average frequency spacing between maxima
,”
J. Acoust. Soc. Am.
34
(
1
),
76
80
(
1962
).
21.
A.
Krokstad
, “
Electroacoustic means of controlling auditorium acoustics
,”
Appl. Acoust.
24
(
4
),
275
288
(
1988
).
22.
M.
Ohsmann
, “
Analyse von Mehrkanalanlagen
” (“Analytic treatment of multiple-channel reverberation systems”),
Acta Acust. Acust.
70
(
4
),
233
246
(
1990
).
23.
M. R.
Schroeder
, “
The ‘Schroeder frequency’ revisited
,”
J. Acoust. Soc. Am.
99
(
5
),
3240
3241
(
1996
).
24.
U. P.
Svensson
, “
Energy-time relations in a room with an electroacoustic system
,”
J. Acoust. Soc. Am.
104
(
3
),
1483
1490
(
1998
).
25.
M. A.
Poletti
, “
The stability of single and multichannel sound systems
,”
Acta Acust. Acust.
86
(
1
),
163
178
(
2000
).
26.
M. R.
Schroeder
, “
Improvement of acoustic-feedback stability by frequency shifting
,”
J. Acoust. Soc. Am.
36
(
9
),
1718
1724
(
1964
).
27.
M. R.
Schroeder
, “
Die statistischen Parameter der Frequenzkurven von großen Räumen
” (“Statistical parameters of the frequency response curves of large rooms”),
Acta Acust. Acust.
4
(
5
),
594
600
(
1954
).
28.
M. R.
Schroeder
, “
Frequency-correlation functions of frequency responses in rooms
,”
J. Acoust. Soc. Am.
34
,
1819
1823
(
1962
).
29.
T.
Claasen
and
W.
Mecklenbrauker
, “
On stationary linear time-varying systems
,”
IEEE Trans. Circuits Syst.
29
,
169
184
(
1982
).
30.
J. L.
Nielsen
, “
Control of stability and coloration in electroacoustic systems in rooms
,”
J. Acoust. Soc. Am.
100
(
6
),
3990
(
1996
).
31.
U.
Zölzer
,
X.
Amatriain
,
D.
Arfib
,
J.
Bonada
,
G.
De Poli
,
P.
Dutilleux
,
G.
Evangelista
,
F.
Keiler
,
A.
Loscos
,
D.
Rocchesso
,
M.
Sandler
,
X.
Serra
, and
T.
Todoroff
,
DAFX—Digital Audio Effect
(
John Wiley & Sons
,
Chichester, UK
,
2002
).
32.
S. J.
Schlecht
and
E. A. P.
Habets
, “
Practical considerations of time-varying feedback delay networks
,” in
Audio Engineering Society Convention
, May
2015
.
33.
M. A.
Poletti
, “
A unitary reverberator for reduced colouration in assisted reverberation systems
,” in
Proceedings of the 1995 International Congress on Noise Control Engineering
, pp.
1223
1232
(
1995
).
34.
M. A.
Poletti
, “
The performance of a new assisted reverberation system
,”
Acta Acust.
2
,
511
524
(
1994
).
35.
A.
Genz
, “
Numerical computation of multivariate normal probabilities
,”
J. Comput. Graph. Stat.
1
,
141
149
(
1992
).
36.
T. F.
Chan
, “
An optimal circulant preconditioner for Toeplitz systems
,”
SIAM J. Sci. Stat. Comput.
9
,
766
771
(
1988
).
37.
R. B.
Nelsen
,
An Introduction to Copulas, Vol. 139 of Lecture Notes in Statistics
(
Springer Science & Business Media
,
New York
,
2013
).
38.
M.
Kleiner
and
U. P.
Svensson
, “
Subjective and objective assessment of some reverberation enhancement systems
,”
J. Acoust. Soc. Am.
89
(
4B
),
1857
(
1991
).
39.
Radiocommunication Assembly International Telecommunication Union, Recommendation ITU-R BS. 1534-1
, “
Method for the subjective assessment of intermediate quality level of coding systems
,”
Technical Report
2003
.
40.
F.
Nagel
,
T.
Sporer
, and
P.
Sedlmeier
, “
Toward a statistically well-grounded evaluation of listening tests—Avoiding pitfalls, misuse, and misconceptions
,” in
128th Audio Engineering Society Convention
,
Red Hook, NY
(
May 22–25, 2010
), pp.
1
10
.
You do not currently have access to this content.