Elastic guided waves are of interest for the non-destructive evaluation of cables. Cables are most often multi-wire structures, and understanding wave propagation requires numerical models accounting for the helical geometry of individual wires, the interwire contact mechanisms and the effects of prestress. In this paper, a modal approach based on a so-called semi-analytical finite element method and taking advantage of a biorthogonality relation is proposed in order to calculate the forced response under excitation of a cable, multi-wired, twisted, and prestressed. The main goal of this paper is to investigate how the energy transfers from a given wire, directly excited, to the other wires in order to identify some localization of energy inside the active wire as the waves propagate along the waveguide. The power flow of the excited field is theoretically derived and an energy transfer parameter is proposed to evaluate the level of energy localization inside a given wire. Numerical results obtained for different polarizations of excitation, central and peripheral, highlight how the energy may localize, spread, or strongly change in the cross-section as waves travel along the axis. In particular, a compressional mode localized inside the central wire is found, with little dispersion and significant excitability.

1.
H.
Kwun
,
K. A.
Bartels
, and
J. J.
Hanley
, “
Effects of tensile loading on the properties of elastic-wave propagation in a strand
,”
J. Acoust. Soc. Am.
103
,
3370
3375
(
1998
).
2.
L.
Laguerre
,
M.
Brissaud
, and
J. C.
Aime
, “
Low-frequency ultrasound reflectometry device based on magnetoelastic transducers for the nondestructive evaluation of steel rods and cables
,”
Bull. Lab. Ponts Chaussées
239
,
7
27
(
2002
).
3.
P.
Rizzo
and
F. L.
di Scalea
, “
Load measurement and health monitoring in cable stays via guided wave magnetostrictive ultrasonics
,”
Mater. Eval.
62
,
1057
1065
(
2004
).
4.
F.
Treyssède
, “
Numerical investigation of elastic modes of propagation in helical waveguides
,”
J. Acoust. Soc. Am.
121
,
3398
3408
(
2007
).
5.
F.
Treyssède
, “
Elastic waves in helical waveguides
,”
Wave Motion
45
,
457
470
(
2008
).
6.
F.
Treyssède
and
L.
Laguerre
, “
Investigation of elastic modes propagating in multi-wire helical waveguides
,”
J. Sound Vib.
329
,
1702
1716
(
2010
).
7.
A.
Frikha
,
P.
Cartraud
, and
F.
Treyssède
, “
Mechanical modeling of helical structures accounting for translational invariance. Part 1: Static behavior
,”
Int. J. Solids Struct.
50
,
1373
1382
(
2013
).
8.
F.
Treyssède
,
A.
Frikha
, and
P.
Cartraud
, “
Mechanical modeling of helical structures accounting for translational invariance. Part 2: Guided wave propagation under axial loads
,”
Int. J. Solids Struct.
50
,
1383
1393
(
2013
).
9.
L.
Gavric
, “
Computation of propagative waves in free rail using a finite element technique
,”
J. Sound Vib.
185
,
531
543
(
1995
).
10.
T.
Hayashi
,
W.-J.
Song
, and
J. L.
Rose
, “
Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example
,”
Ultrasonics
41
,
175
183
(
2003
).
11.
M.
Mazzotti
,
A.
Marzani
,
I.
Bartoli
, and
E.
Viola
, “
Guided waves dispersion analysis for prestressed viscoelastic waveguides by means of the SAFE method
,”
Int. J. Solids Struct.
49
,
2359
2372
(
2012
).
12.
M.
Mazzotti
,
I.
Bartoli
, and
A.
Marzani
, “
Ultrasonic leaky guided waves in fluid-coupled generic waveguides: Hybrid finite-boundary element dispersion analysis and experimental validation
,”
J. Appl. Phys.
115
,
143512
(
2014
).
13.
I.
Bartoli
,
S.
Salamone
,
R.
Phillips
,
F. L.
di Scalea
, and
C. S.
Sikorsky
, “
Use of interwire ultrasonic leakage to quantify loss of prestress in multiwire tendons
,”
J. Eng. Mech.
137
,
324
333
(
2011
).
14.
C.
Nucera
and
F. L.
di Scalea
, “
Monitoring load levels in multi-wire strands by nonlinear ultrasonic waves
,”
Struct. Health Monit.
10
,
617
629
(
2011
).
15.
R.
Raisutis
,
R.
Kazys
,
L.
Mazeika
,
E.
Zukauskas
,
V.
Samaitis
, and
A.
Jankauskas
, “
Ultrasonic guided wave-based testing technique for inspection of multi-wire rope structures
,”
NDT&E Int.
62
,
40
49
(
2014
).
16.
J.
Schotté
and
R.
Ohayon
, “
Incompressible hydroelastic vibrations: Finite element modeling of the elastogravity operator
,”
Comput. Struct.
83
,
209
219
(
2005
).
17.
F.
Treyssède
and
M. B.
Tahar
, “
Jump conditions for unsteady small perturbations at fluid-solid interfaces in the presence of initial flow and prestress
,”
Wave Motion
46
,
155
167
(
2009
).
18.
F.
Treyssède
, “
Mode propagation in curved waveguides and scattering by inhomogeneities: Application to the elastodynamics of helical structures
,”
J. Acoust. Soc. Am.
129
,
1857
1868
(
2011
).
19.
K. J.
Bathe
,
Finite Element Procedures
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1996
),
1037
pp.
20.
P.
Wriggers
,
Computational Contact Mechanics
(
Springer-Verlag
,
Berlin
),
518
pp.
21.
F.
Tisseur
and
K.
Meerbergen
, “
The quadratic eigenvalue problem
,”
SIAM Rev.
43
,
235
286
(
2001
).
22.
V.
Baronian
, “
Coupling of modal and finite elements methods for the diffraction of guided elastic waves - Application to Non Destructive Testing
,” Ph.D. thesis,
Ecole Polytechnique
(
2009
) (in French).
23.
F.
Treyssède
and
L.
Laguerre
, “
Numerical and analytical calculation of modal excitability for elastic wave generation in lossy waveguides
,”
J. Acoust. Soc. Am.
133
,
3827
3837
(
2013
).
24.
B. A.
Auld
,
Acoustic Fields and Waves in Solids
, 2nd ed. (
Krieger
,
Malabar, FL
,
1990
), Vol. II,
432
pp.
25.
W. B.
Fraser
, “
Othogonality relation for Rayleigh−Lamb modes of vibration of a plate
,”
J. Acoust. Soc. Am.
59
,
215
216
(
1976
).
26.
V.
Pagneux
and
A.
Maurel
, “
Lamb wave propagation in elastic waveguides with variable thickness
,”
Proc. R. Soc. A
462
,
1315
1339
(
2006
).
27.
W. B.
Fraser
, “
Separable equations for a cylindrical anisotropic elastic waveguide
,”
J. Sound Vib.
72
,
151
157
(
1980
).
28.
F.
Benmeddour
,
F.
Treyssède
, and
L.
Laguerre
, “
Numerical modeling of guided waves interaction with non-axisymmetric cracks in elastic cylinders
,”
Int. J. Solids Struct.
48
,
764
774
(
2011
).
29.
B. A.
Auld
,
Acoustic Fields and Waves in Solids
, 2nd ed. (
Krieger
,
Malabar, FL
,
1990
), Vol. I,
446
pp.
30.
R. E.
Collin
,
Field Theory of Guided Waves
(
IEEE Press
,
Piscataway, NJ
,
1991
),
864
pp.
31.
C.
Geuzaine
and
J.-F.
Remacle
, “
Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities
,”
Int. J. Num. Methods Eng.
79
,
1309
1331
(
2009
).
32.
N.
Chandrasekaran
,
W. E.
Haisler
, and
R. E.
Goforth
, “
Finite element analysis of Hertz contact problem with friction
,”
Finite Elem. Anal. Des.
3
,
39
56
(
1987
).
33.
K. L.
Nguyen
and
F.
Treyssède
, “
Numerical investigation of leaky modes in helical structural waveguides embedded into a solid medium
,”
Ultrasonics
57
,
125
134
(
2015
).
34.
I.
Bartoli
,
A.
Marzani
,
F. L.
di Scalea
,
P.
Rizzo
,
E.
Viola
,
E.
Sorrivi
, and
R.
Phillips
, “
SAFE modeling of waves for the structural health monitoring of prestressing tendons
,”
Proc. SPIE
6532
,
65320D1
65320D12
(
2007
).
35.
C.
Schaal
,
S.
Bischoff
, and
L.
Gaul
, “
Energy-based models for guided ultrasonic wave propagation in multi-wire cables
,”
Int. J. Solids Struct.
64–65
,
22
29
(
2015
).
36.
J.
Xu
,
X.
Wu
, and
P.
Sun
, “
Detecting broken-wire flaws at multiple locations in the same wire of prestressing strands using guided waves
,”
Ultrasonics
53
,
150
156
(
2013
).
37.
E.
Glushkov
,
N.
Glushkova
, and
S.
Fomenko
, “
Wave energy transfer in elastic half-spaces with soft interlayers
,”
J. Acoust. Soc. Am.
137
,
1802
1812
(
2015
).
You do not currently have access to this content.