A model for nonlinear gas bubble pulsation in marine sediments is presented. This model is then linearized to determine the resonance frequency and the damping terms for linear radial oscillations. The linear model is then used to predict the effects that such bubble pulsations will have on the sound speed and attenuation of acoustic waves propagating in gassy marine sediment. The results are compared for monodisperse populations against the predictions of a model of Anderson and Hampton and, furthermore, the additional abilities of the model introduced in this paper are discussed. These features include the removal of the sign ambiguities in the expressions, the straightforward implementation for acoustic propagation through polydisperse bubble populations, the capability to estimate bubble size distributions through a full acoustic inversion, and the capability to predict nonlinear effects.

1.
G. C.
Sills
and
S. J.
Wheeler
, “
The significance of gas for offshore operations
,”
Cont. Shelf Res.
12
(
10
)
1239
1250
(
1992
).
2.
G. C.
Sills
,
S. J.
Wheeler
,
S. D.
Thomas
, and
T. N.
Gardiner
, “
Behaviour of offshore soils containing gas bubbles
,”
Geotechnique
41
,
227
241
(
1991
).
3.
K. B.
Briggs
and
M. D.
Richardson
, “
Variability in in situ shear strength of gassy muds
,”
Geo-Mar. Lett.
16
,
189
195
(
1996
).
4.
T. G.
Leighton
and
P. R.
White
, “
Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions
,”
Proc. R. Soc. A
468
,
485
510
(
2012
).
5.
E. J.
Sauter
,
S. I.
Muyakshin
,
J. L.
Charlou
,
M.
Schlüter
,
A.
Boetius
,
K.
Jerosch
,
E.
Damm
,
J. P.
Foucher
, and
M.
Klages
, “
Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles
,”
Earth Planet. Sci. Lett.
243
,
354
365
(
2006
).
6.
I.
Leifer
,
D.
Roberts
,
J.
Margolis
, and
F.
Kinnaman
, “
In situ sensing of methane emissions from natural marine hydrocarbon seeps: A potential remote sensing technology
,”
Earth Planet. Sci. Lett.
245
,
509
522
(
2006
).
7.
A. I.
Best
,
M. D.
Richardson
,
B. P.
Boudreau
,
A. G.
Judd
,
I.
Leifer
,
A. P.
Lyons
,
C. S.
Martens
,
D. L.
Orange
, and
S. J.
Wheeler
, “
Shallow bed methane gas could pose coastal hazard
,”
EOS Trans.
87
(
22
),
213
217
(
2006
).
8.
J.
Blackford
,
H.
Stahl
,
J. M.
Bull
,
B. J. P.
Bergès
,
M.
Cevatoglu
,
A.
Lichtschlag
,
D.
Connelly
,
R. H.
James
,
J.
Kita
,
D.
Long
,
M.
Naylor
,
K.
Shitashima
,
D.
Smith
,
P.
Taylor
,
I.
Wright
,
M.
Akhurst
,
B.
Chen
,
T. M.
Gernon
,
C.
Hauton
,
M.
Hayashi
,
H.
Kaieda
,
T. G.
Leighton
,
T.
Sato
,
M. D. J.
Sayer
,
M.
Suzumura
,
K.
Tait
,
M. E.
Vardy
,
P. R.
White
, and
S.
Widdicombe
, “
Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage
,”
Nat. Clim. Change
4
,
1011
1016
(
2014
).
9.
J.
Blackford
,
J. M.
Bull
,
M.
Cevatoglu
,
D.
Connelly
,
C.
Hauton
,
R. H.
James
,
A.
Lichtschlag
,
H.
Stahl
,
S.
Widdicombe
, and
I. C.
Wright
, “
Marine baseline and monitoring strategies for carbon dioxide capture and storage (CCS)
,”
Int. J. Greenhouse Gas Control
38
,
221
229
(
2015
).
10.
B. J. P.
Berges
,
T. G.
Leighton
, and
P. R.
White
, “
Passive acoustic quantification of gas fluxes during controlled gas release experiments
,”
Int. J. Greenhouse Gas Control
38
,
64
79
(
2015
).
11.
T. G.
Leighton
and
G.
Robb
, “
Preliminary mapping of void fractions and sound speeds in gassy marine sediments from subbottom profiles
,”
J. Acoust. Soc. Am.
124
(
5
),
EL313
EL320
(
2008
).
12.
G. B. N.
Robb
,
S. P.
Robinson
,
P. D.
Theobald
,
G.
Hayman
,
V. F.
Humphrey
,
T. G.
Leighton
,
L. S.
Wang
,
J. K.
Dix
, and
A. I.
Best
, “
Absolute calibration of hydrophones immersed in sandy sediment
,”
J. Acoust. Soc. Am.
125
(
5
),
2918
2927
(
2009
).
13.
T. G.
Leighton
,
A. D.
Phelps
,
D. G.
Ramble
, and
D. A.
Sharpe
, “
Comparison of the abilities of eight acoustic techniques to detect and size a single bubble
,”
Ultrasonics
34
,
661
667
(
1996
).
14.
E. A.
Zabolotskaya
and
S. I.
Soluyan
, “
Emission of harmonic and combination frequency waves by air bubbles
,”
Sov. Phys. Acoust.
18
,
396
398
(
1973
).
15.
T. G.
Leighton
,
D. G.
Ramble
, and
A. D.
Phelps
, “
The detection of tethered and rising bubbles using multiple acoustic techniques
,”
J. Acoust. Soc. Am.
101
,
2626
2635
(
1997
).
16.
S. V.
Karpov
,
Z.
Klusek
,
A. L.
Matveev
,
A. I.
Potapov
, and
A. M.
Sutin
, “
Nonlinear interaction of acoustic wave in gas-saturated marine sediments
,”
Acoust. Phys.
42
,
527
533
(
1996
).
17.
F. A.
Boyle
and
N. P.
Chotiros
, “
Nonlinear acoustic scattering from a gassy poroelastic seabed
,”
J. Acoust. Soc. Am.
103
,
1328
1336
(
1998
).
18.
Z.
Klusek
,
A.
Sutin
,
A.
Matveev
, and
A.
Potapov
, “
Observation of nonlinear scattering of acoustical waves at sea sediments
,”
Acoust. Lett.
18
,
198
203
(
1995
).
19.
T. G.
Leighton
, “
The Rayleigh—Plesset equation in terms of volume with explicit shear losses
,”
Ultrasonics
48
,
85
90
(
2008
).
20.
T. G.
Leighton
, “
Theory for acoustic propagation in marine sediment containing gas bubbles which may pulsate in a non-stationary nonlinear model
,”
Geophys. Res. Lett.
34
,
L17607
, doi: (
2007
).
21.
E. L.
Hamilton
, “
Compressional wave attenuation in marine sediments
,”
Geophysics
37
,
620
646
(
1972
).
22.
S. S.
Fu
,
R. H.
Wilkens
, and
L. N.
Frazer
, “
In situ velosity profiles in gassy sediments: Kiel Bay
,”
Geo-Mar. Lett.
16
,
249
253
(
1996
).
23.
M. D.
Richardson
and
K. B.
Briggs
, “
In situ and laboratory geoacoustic measurements in soft mud and hard-packed sand sediments: Implications for high-frequency acoustic propagation and scattering
,”
Geo-Mar. Lett.
16
,
196
203
(
1996
).
24.
G. B. N.
Robb
,
A. I.
Best
,
J. K.
Dix
,
J. M.
Bull
,
T. G.
Leighton
, and
P. R.
White
, “
The frequency dependence of compressional wave velocity and attenuation coefficient of intertidal marine sediments
,”
J. Acoust. Soc. Am.
120
,
2526
2537
(
2006
).
25.
E. L.
Hamilton
,
G.
Shumway
,
H. W.
Menard
, and
C. J.
Shipek
, “
Acoustics and other physical properties of shallow-water sediments off San Diego
,”
J. Acoust. Soc. Am.
28
,
1
15
(
1956
).
26.
E. L.
Hamilton
, “
Attenuation of shear waves in marine sediments
,”
J. Acoust. Soc. Am.
60
,
334
338
(
1976
).
27.
E. L.
Hamilton
and
R. T.
Bachman
, “
Sound velocity and related properties of marine sediments
,”
J. Acoust. Soc. Am.
72
,
1891
1904
(
1982
).
28.
G.
Shumway
, “
Sound speed and absorption studies of marine sediment by a resonance method
,”
Geophysics
25
,
451
467
(
1960
).
29.
G.
Shumway
, “
Sound speed and absorption studies of marine sediment by a resonance method—Part II
,”
Geophysics
25
,
659
681
(
1960
).
30.
A. I.
Best
,
Q. J.
Huggett
, and
A. J. K.
Harris
, “
Comparison of in situ and laboratory acoustic measurements on Lough Hyne marine sediments
,”
J. Acoust. Soc. Am.
110
,
695
709
(
2001
).
31.
M. D.
Richardson
,
K. B.
Briggs
,
L. D.
Bibee
,
P. A.
Jumars
,
W. B.
Sawyer
,
D. B.
Albert
,
R. H.
Bennett
,
T. K.
Berger
,
M. J.
Buckingham
,
N. P.
Chotiros
,
P. H.
Dahl
,
N. T.
Dewitt
,
P.
Fleischer
,
R.
Flood
,
C. F.
Greenlaw
,
D. V.
Holliday
, and
Hulbert
, “
Overview of SAX99: Environmental considerations
,”
IEEE J. Oceanic Eng.
26
,
26
53
(
2001
).
32.
J.
Yang
,
D.
Tang
, and
K. L.
Williams
, “
Direct measurement of sediment sound speed in Shallow Water '06
,”
J. Acoust. Soc. Am.
124
,
EL116
EL121
(
2008
).
33.
A.
Turgut
and
T.
Yamamoto
, “
Measurements of acoustic wave velocities and attenuations in marine sediment
,”
J. Acoust. Soc. Am.
87
,
2376
2383
(
1990
).
34.
G.
Robb
,
A.
Best
,
J.
Dix
,
P.
White
,
T.
Leighton
,
J.
Bull
, and
A.
Harris
, “
The measurement of the in situ compressional wave properties of marine sediments
,”
IEEE J. Oceanic Eng.
32
,
484
496
(
2007
).
35.
A. B.
Wood
and
D. E.
Weston
, “
The propagation of sound in mud
,”
Acustica
14
,
156
162
(
1964
).
36.
F. A.
Bowles
, “
Observations on attenuation and shear-wave velocity in fine-grained marine sediments
,”
J. Acoust. Soc. Am.
101
,
3385
3397
(
1997
).
37.
R. D.
Stoll
, “
Experimental studies of attenuation in sediments
,”
J. Acoust. Soc. Am.
66
(
4
),
1152
1160
(
1979
).
38.
B. A.
Brunson
and
R. K.
Johnson
, “
Laboratory measurements of shear wave attenuation in saturated sand
,”
J. Acoust. Soc. Am.
68
,
1371
1375
(
1980
).
39.
M. A.
Biot
, “
Theory of propagation of elastic waves in fluid-saturated porous solids: I. Low-frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
168
178
(
1956
).
40.
M. A.
Biot
, “
Theory of propagation of elastic waves in fluid-saturated porous solids: II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
179
191
(
1956
).
41.
R. D.
Stoll
, “
Marine sediment acoustics
,”
J. Acoust. Soc. Am.
77
(
5
),
1789
1799
(
1985
).
42.
J. G.
Berryman
, “
Confirmation of Biot's theory
,”
Appl. Phys. Lett.
37
(
4
),
382
384
(
1980
).
43.
K. L.
Williams
,
D. R.
Jackson
,
E. I.
Thorsos
, and
D.
Tang
, “
Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media
,”
IEEE J. Ocean. Eng.
27
,
413
428
(
2002
).
44.
D. R.
Jackson
and
M. D.
Richardson
,
High-Frequency Seafloor Acoustics
(
Springer
,
New York
,
2007
), pp.
1
616
.
45.
J. A.
Hawkins
and
A.
Bedford
, “
Variational theory of bubbly media with a distribution of bubble sizes. 2: Porous solids
,”
Int. J. Eng. Sci.
30
(
9
),
1177
1186
(
1992
).
46.
J. L.
Buchanan
, “
A comparison of broadband models for sand sediments
,”
J. Acoust. Soc. Am.
120
(
6
),
3584
3598
(
2006
).
47.
D. M. J.
Smeulders
and
M. E. H.
Van Dongen
, “
Wave propagation in porous media containing a dilute gas-liquid mixture
,”
J. Fluid Mech.
343
,
351
373
(
1997
).
48.
A. L.
Anderson
,
F.
Abegg
,
J. A.
Hawkins
,
M. E.
Duncan
, and
A. P.
Lyons
, “
Bubble populations and acoustic interaction with the gassy floor of Eckernforde Bay
,”
Cont. Shelf Res.
18
,
1807
1838
(
1998
).
49.
S. G.
Kargl
,
K. L.
Williams
, and
R.
Lim
, “
Double monopole resonance of a gas-filled, spherical cavity in a sediment
,”
J. Acoust. Soc. Am.
103
(
1
),
265
274
(
1998
).
50.
F. A.
Boyle
and
N. P.
Chotiros
, “
A model for acoustic backscatter from muddy sediments
,”
J. Acoust. Soc. Am.
98
(
1
),
525
530
(
1995
).
51.
F. A.
Boyle
and
N. P.
Chotiros
, “
A model for high-frequency acoustic backscatter from gas bubbles in sandy sediments at shallow grazing angles
,”
J. Acoust. Soc. Am.
98
(
1
),
531
541
(
1995
).
52.
A. L.
Anderson
and
L. D.
Hampton
, “
Acoustics of gas-bearing sediments. I. Background
,”
J. Acoust. Soc. Am.
67
(
6
),
1865
1889
(
1980
).
53.
A. L.
Anderson
and
L. D.
Hampton
, “
Acoustics of gas-bearing sediment. II. Measurements and models
,”
J. Acoust. Soc. Am.
67
(
6
),
1890
1903
(
1980
).
54.
A. I.
Best
,
M. D. J.
Tuffin
,
J. K.
Dix
, and
J. M.
Bull
, “
Tidal height and frequency dependence of acoustic velocity and attenuation in shallow gassy marine sediments
,”
J. Geophys. Res. B
109
,
08101
, doi: (
2004
).
55.
T. G.
Leighton
,
S. D.
Meers
, and
P. R.
White
, “
Propagation through nonlinear time-dependent bubble clouds and the estimation of bubble populations from measured acoustic characteristics
,”
Proc. R. Soc. London Ser. A
460
(
2049
),
2521
2550
(
2004
).
56.
A. P.
Lyons
,
M. E.
Duncan
, and
A. L.
Anderson
, “
Predictions of the acoustic scattering response of free-methane bubbles in muddy sediments
,”
J. Acoust. Soc. Am.
99
(
1
),
163
172
(
1996
).
57.
M. A.
Ainslie
and
T. G.
Leighton
, “
Near resonant bubble acoustic cross-section corrections, including examples from oceanography, volcanology, and biomedical ultrasound
,”
J. Acoust. Soc. Am.
126
(
5
),
2163
2175
(
2009
).
58.
M. A.
Ainslie
and
T. G.
Leighton
, “
Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble
,”
J. Acoust. Soc. Am.
130
(
5
),
3184
3208
(
2011
).
59.
J. W. L.
Clarke
and
T. G.
Leighton
, “
A method for estimating time-dependent acoustic cross-sections of bubbles and bubble clouds prior to the steady state
,”
J. Acoust. Soc. Am.
107
(
4
)
1922
1929
(
2000
).
60.
A. D.
Phelps
,
D. G.
Ramble
, and
T. G.
Leighton
, “
The use of a combination frequency technique to measure the surf zone bubble population
,”
J. Acoust. Soc. Am.
101
(
4
)
1981
1989
(
1997
).
61.
A. D.
Phelps
and
T. G.
Leighton
, “
Oceanic bubble population measurements using a buoy-deployed combination frequency technique
,”
IEEE J. Oceanic Eng.
23
,
400
410
(
1998
).
62.
T. G.
Leighton
,
R. J.
Lingard
,
A. J.
Walton
, and
J. E.
Field
, “
Acoustic bubble sizing by the combination of subharmonic emissions with an imaging frequency
,”
Ultrasonics
29
,
319
323
(
1991
).
63.
L. A.
Ostrovsky
,
A. M.
Sutin
,
I. A.
Soustova
,
A. L.
Matveyev
,
A. I.
Potapov
, and
Z.
Kluzek
, “
Nonlinear scattering of acoustic waves by natural and artificially generated subsurface bubble layers in sea
,”
J. Acoust. Soc. Am.
113
(
2
),
741
749
(
2003
).
64.
A. M.
Sutin
,
S. W.
Yoon
,
E. J.
Kim
, and
I. N.
Didenkulov
, “
Nonlinear acoustic method for bubble density measurements in water
,”
J. Acoust. Soc. Am.
103
(
5
),
2377
2384
(
1998
).
65.
J. G.
Berryman
, “
Long-wavelength propagation in composite elastic media. I. Spherical inclusions
,”
J. Acoust. Soc. Am.
68
(
6
),
1808
1819
(
1980
).
66.
J. G.
Berryman
, “
Long-wavelength propagation in composite elastic media. II. Elipsoidal inclusions
,”
J. Acoust. Soc. Am.
68
(
6
),
1820
1831
(
1980
).
67.
X.
Yang
and
C. C.
Church
, “
A model for dynamics of gas bubbles in soft tissue
,”
J. Acoust. Soc. Am.
118
(
6
),
3595
3606
(
2005
).
68.
A.
Prosperetti
,
L.
Crum
, and
K.
Commander
, “
Nonlinear bubble dynamics
,”
J. Acoust. Soc. Am.
83
,
502
514
(
1988
).
69.
J. P. Y.
Maa
and
A. J.
Mehta
, “
Soft mud properties: Voigt model
,”
J. Waterw., Port, Coastal, Ocean Eng.
114
(
6
),
765
770
(
1988
).
70.
H.
Macpherson
, “
The attenuation of water waves over a non-rigid bed
,”
J. Fluid Mech.
97
(
4
),
721
742
(
1980
).
71.
H. T.
Chou
,
M. A.
Foda
, and
J. R.
Hunt
, “
Rheological response of cohesive sediments to oscillatory forcing
,” in
Nearshore and Estuarine Cohesive Sediment Transport, Coastal Estuarine Sci. Ser.
(
AGU Washington
,
DC
,
2013
), Vol.
42
, pp.
126
147
.
72.
M. A.
Foda
,
J. R.
Hunt
, and
H. T.
Chou
, “
A nonlinear model for the fluidization of marine muds by waves
,”
J. Geophys. Res.
98
(
C4
),
7039
7047
, doi: (
1993
).
73.
M.
Jain
and
A. J.
Mehta
, “
Role of basic rheological models in determination of wave attenuation over muddy seabeds
,”
Cont. Shelf Res.
29
,
642
651
(
2009
).
74.
K. W.
Commander
and
A.
Prosperetti
, “
Linear pressure waves in bubbly liquids: Comparison between theory and experiment
,”
J. Acoust. Soc. Am.
85
,
732
746
(
1989
).
75.
G. E.
Claypool
and
I. R.
Kaplan
, “
The origin and distribution of methane in marine sediments
,” in
Natural Gases in Marine Sediments
(
Plenum
,
New York
,
1974
), pp.
99
139
.
76.
G.
Mavko
,
T.
Mukerij
, and
J.
Dvorkin
,
The Rock Physics Handbook
(
Cambridge University Press
,
Cambridge, UK
,
1998
), pp.
1
511
.
77.
R.
Duraiswami
,
S.
Prabhukumar
, and
G. L.
Chahine
, “
Bubble counting using an inverse acoustic scattering method
,”
J. Acoust. Soc. Am.
104
,
2699
2717
(
1998
).
78.
T. G.
Leighton
,
A.
Mantouka
,
P. R.
White
, and
Z.
Klusek
, “
Towards field measurements of populations of methane gas bubbles in marine sediment: An inversion method required for interpreting two-frequency insonification data from sediment containing gas bubbles
,”
Hydroacoustics
11
,
203
224
(
2008
).
79.
A.
Mantouka
, “
Development of a two-frequency technique for gas-bubble sizing in marine sediment
,” Ph.D. thesis, University of Southampton,
2010
.
80.
N. P.
Chotiros
and
M. J.
Isakson
, “
A broadband model of sandy ocean sediments: Biot—Stoll with contact squirt flow and shear drag
,”
J. Acoust. Soc. Am.
116
(
4
),
2011
2022
(
2004
).
You do not currently have access to this content.