Time reversal is used for localizing sources of recorded infrasound signals propagating in a windy, stratified atmosphere. Due to the convective effect of the background flow, the back-azimuths of the recorded signals can be substantially different from the source back-azimuth, posing a significant difficulty in source localization. The back-propagated signals are characterized by negative group velocities from which the source back-azimuth and source-to-receiver (STR) distance can be estimated using the apparent back-azimuths and trace velocities of the signals. The method is applied to several distinct infrasound arrivals recorded by two arrays in the Netherlands. The infrasound signals were generated by the Buncefield oil depot explosion in the U.K. in December 2005. Analyses show that the method can be used to substantially enhance estimates of the source back-azimuth and the STR distance. In one of the arrays, for instance, the deviations between the measured back-azimuths of the signals and the known source back-azimuth are quite large (−1° to −7°), whereas the deviations between the predicted and known source back-azimuths are small with an absolute mean value of <1°. Furthermore, the predicted STR distance is off only by <5% of the known STR distance.

1.
Arrowsmith
,
S.
,
Euler
,
G.
,
Marcillo
,
O.
,
Blom
,
P.
,
Whitaker
,
R.
, and
Randall
,
G.
(
2015
). “
Development of a robust and automated infrasound event catalogue using the International Monitoring System
,”
Geophys. J. Int.
200
,
1411
1422
.
2.
Brachet
,
N.
,
Brown
,
D.
,
Le Bras
,
R.
,
Cansi
,
Y.
,
Mialle
,
P.
, and
Coyne
,
J.
(
2010
). “
Monitoring the Earth's atmosphere with the global IMS infrasound network
,” in
Infrasound Monitoring for Atmospheric Studies
, edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Hauchecorn
(
Springer
,
New York
), pp.
77
118
.
3.
Brekhovskikh
,
L.
, and
Godin
,
O.
(
1999
).
Acoustics of Layered Media II: Point Sources and Bounded Beams
(
Springer
,
Berlin
), pp. 125,
131
133
, 143, 158.
4.
Brummelen
,
G.
(
2013
).
Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry
(
Princeton University Press
,
Princeton, NJ
), pp.
97
98
, 161–167.
5.
Cansi
,
Y.
(
1995
). “
An automatic seismic event processing for detection and location: The PMCC method
,”
Geophys. Res. Lett.
22
,
1021
1024
, doi:.
6.
Ceranna
,
L.
,
Le Pichon
,
A.
,
Green
,
D.
, and
Mialle
,
P.
(
2009
). “
The Buncefield explosion: A benchmark for infrasound analysis across Central Europe
,”
Geophys. J. Int.
177
,
491
508
.
7.
Christie
,
D.
, and
Campus
,
P.
(
2010
). “
The IMS infrasound network: Design and establishment of infrasound stations
,” in
Infrasound Monitoring for Atmospheric Studies
(
Springer
,
New York
), pp.
29
75
.
8.
Drob
,
D.
,
Emmert
,
J.
,
Crowley
,
G.
,
Picone
,
J.
,
Shepherd
,
G.
,
Skinner
,
W.
,
Hays
,
P.
,
Niciejewski
,
R.
,
Larsen
,
M.
,
She
,
C.
,
Meriwether
,
J.
,
Hernandez
,
G.
,
Jarvis
,
M.
,
Sipler
,
D.
,
Tepley
,
C.
,
O'Brien
,
M.
,
Bowman
,
J.
,
Wu
,
Q.
,
Murayama
,
Y.
,
Kawamura
,
S.
,
Reid
,
I.
, and
Vincent
,
R.
(
2008
). “
An empirical model of the Earth's horizontal wind fields: HWM07
,”
J. Geophys. Res.
113
,
A12304
, doi:.
9.
Drob
,
D.
,
Garcés
,
M.
,
Hedlin
,
M.
, and
Brachet
,
N.
(
2010
). “
The temporal morphology of infrasound propagation
,”
Pure Appl. Geophys.
167
,
437
453
.
10.
Drob
,
D. P.
,
Picone
,
J. M.
, and
Garcés
,
M.
(
2003
). “
Global morphology of infrasound propagation
,”
J. Geophys. Res.
108
(
D21
),
4680
, doi:.
11.
Evers
,
L.
, and
Haak
,
H.
(
2007
). “
Infrasonic forerunners: Exceptionally fast acoustic phases
,”
Geophys. Res. Lett.
34
,
L10806
, doi:.
12.
Evers
,
L.
, and
Haak
,
H.
(
2010
). “
The characteristics of infrasound, its propagation and some early history
,” in
Infrasound Monitoring for Atmospheric Studies
(
Springer
,
New York
), pp.
3
27
.
13.
Fee
,
D.
,
Waxler
,
R.
,
Assink
,
J.
,
Gitterman
,
Y.
,
Given
,
J.
,
Coyne
,
J.
, and
Grenard
,
P.
(
2013
). “
Overview of the 2009 and 2011 Sayarim infrasound calibration experiments
,”
J. Geophys. Res.
118
,
6122
6143
, doi:.
14.
Ferguson
,
B.
,
Criswick
,
L.
, and
Lo
,
K.
(
2002
). “
Locating far-field impulsive sound sources in air by triangulation
,”
J. Acoust. Soc. Am
111
,
104
116
.
15.
Fink
,
M.
(
1992
). “
Time reversal of ultrasonic fields—Part I: Basic principles
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Control
39
,
555
566
.
16.
Garcés
,
M.
,
Hansen
,
R.
, and
Lindquist
,
K.
(
1998
). “
Traveltimes for infrasonic waves propagating in a stratified atmosphere
,”
Geophys. J. Int.
135
,
255
263
.
17.
Godin
,
O.
(
2002
). “
Coupled-mode sound propagation in a range-dependent, moving fluid
,”
J. Acoust. Soc. Am.
111
,
1984
1995
.
18.
Godin
,
O.
(
2012
). “
Acoustic-gravity waves in atmospheric and oceanic waveguides
,”
J. Acoust. Soc. Am.
132
,
657
669
.
19.
Jackson
,
D.
, and
Dowling
,
D.
(
1991
). “
Phase conjugation in underwater acoustics
,”
J. Acoust. Soc. Am.
89
,
171
181
.
20.
Kuperman
,
W.
,
Hodgkiss
,
W.
,
Song
,
H.
,
Akal
,
T.
,
Ferla
,
C.
, and
Jackson
,
D. R.
(
1998
). “
Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror
,”
J. Acoust. Soc. Am.
103
,
25
40
.
21.
Le Pichon
,
A.
,
Vergoz
,
J.
,
Herry
,
P.
, and
Ceranna
,
L.
(
2008
). “
Analyzing the detection capability of infrasound arrays in Central Europe
,”
J. Geophys. Res.
113
,
D12115
, doi:.
22.
Lonzaga
,
J. B.
(
2015
). “
A theoretical relation between the celerity and trace velocity of infrasonic phases
,”
J. Acoust. Soc. Am.
138
,
EL242
EL247
.
23.
Lonzaga
,
J.
,
Waxler
,
R.
,
Assink
,
J.
, and
Talmadge
,
C.
(
2015
). “
Modelling waveforms of infrasound arrivals from impulsive sources using weakly non-linear ray theory
,”
Geophys. J. Int.
200
,
1347
1361
.
24.
Marcillo
,
O.
,
Arrowsmith
,
S.
,
Whitaker
,
R.
,
Anderson
,
D.
,
Nippress
,
A.
,
Green
,
D.
, and
Drob
,
D.
(
2013
). “
Using physics-based priors in a Bayesian algorithm to enhance infrasound source location
,”
Geophys J. Int.
196
,
375
385
.
25.
Modrak
,
R.
,
Arrowsmith
,
S.
, and
Anderson
,
D.
(
2010
). “
A Bayesian framework for infrasound location
,”
Geophys. J. Int.
181
,
399
405
.
26.
Ostashev
,
V.
(
1997
).
Acoustic in Moving Inhomogeneous Media
(
Spon
,
London
), pp.
36
,
130
.
27.
Picone
,
J. M.
,
Hedin
,
A. E.
,
Drob
,
D. P.
, and
Aikin
,
A. C.
(
2002
). “
NRLMSISE–00 empirical model of the atmosphere: Statistical comparisons and scientific issues
,”
J. Geophys. Res.
107
,
SIA 15-1–SIA15-16
, doi:.
28.
Pierce
,
A.
(
1965
). “
Propagation of acoustic-gravity waves in a temperature-and wind-stratified atmosphere
,”
J. Acoust. Soc. Am.
37
,
218
227
.
29.
Prada
,
C.
,
Wu
,
F.
, and
Fink
,
M.
(
1991
). “
The iterative time reversal mirror: A solution to self-focusing in the pulse echo mode
,”
J. Acoust. Soc. Am.
90
,
1119
1129
.
30.
Shankar
,
R.
(
1994
).
Principles of Quantum Mechanics
, 2nd. ed. (
Plenum
,
New York
), pp.
297
303
.
31.
Szuberla
,
C.
, and
Olson
,
J.
(
2004
). “
Uncertainties associated with parameter estimation in atmospheric infrasound arrays
,”
J. Acoust. Soc. Am.
115
,
253
258
.
32.
Walker
,
K.
,
Hedlin
,
M.
,
de Groot-Hedlin
,
C.
,
Vergoz
,
J.
,
Le Pichon
,
A.
, and
Drob
,
D. P.
(
2010
). “
Source location of the 19 February 2008 Oregon bolide using seismic networks and infrasound arrays
,”
J. Geophys. Res.
115
,
B12329
, doi:.
33.
Waxler
,
R.
,
Evers
,
L. G.
,
Assink
,
J.
, and
Blom
,
P.
(
2015
). “
The stratospheric arrival pair in infrasound propagation
,”
J. Acoust. Soc. Am.
137
,
1846
1856
.
34.
Wilson
,
D.
(
1998
). “
Performance bounds for acoustic direction-of-arrival arrays operating in atmospheric turbulence
,”
J. Acoust. Soc. Am.
103
,
1306
1319
.
You do not currently have access to this content.