The frequencies, magnitudes, and bandwidths of vocal tract resonances are all important in understanding and synthesizing speech. High precision acoustic impedance spectra of the vocal tracts of 10 subjects were measured from 10 Hz to 4.2 kHz by injecting a broadband acoustic signal through the lips. Between 300 Hz and 4 kHz the acoustic resonances R (impedance minima measured through the lips) and anti-resonances R¯ (impedance maxima) associated with the first three voice formants, have bandwidths of ∼50 to 90 Hz for men and ∼70 to 90 Hz for women. These acoustic resonances approximate those of a smooth, dry, rigid cylinder of similar dimensions, except that their bandwidths indicate higher losses in the vocal tract. The lossy, inertive load and airflow caused by opening the glottis further increase the bandwidths observed during phonation. The vocal tract walls are not rigid and measurements show an acousto-mechanical resonance R0 ∼ 20 Hz and anti-resonance R¯0200Hz. These give an estimate of wall inertance consistent with an effective thickness of 1–2 cm and a wall stiffness of 2–4 kN m−1. The non-rigidity of the tract imposes a lower limit of the frequency of the first acoustic resonance fR1 and the first formant F1.

1.
ANSI
(
2004
). ANSI S1.1-1994,
American National Standard Acoustical Terminology
(
Acoustical Society of America
,
Melville, NY
).
2.
Arnela
,
M.
,
Guasch
,
O.
, and
Alías
,
F.
(
2013
). “
Effects of head geometry simplifications on acoustic radiation of vowel sounds based on time-domain finite-element simulations
,”
J. Acoust. Soc. Am.
134
,
2946
2954
.
3.
Boutin
,
H.
,
Fletcher
,
N.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2013
). “
Lip motion, the playing frequency of the trombone and the upstream and downstream impedances
,” in
Proceedings of the Stockholm Music Acoustics Conference
, Stockholm, Sweden, pp.
483
489
.
5.
Childers
,
D. G.
, and
Wu
,
K.
(
1991
). “
Gender recognition from speech. Part II: Fine analysis
,”
J. Acoust. Soc. Am.
90
(
4
),
1841
1856
.
6.
Coffin
,
B.
(
1989
).
Historical Vocal Pedagogy Classics
(
Scarecrow Press
,
Maryland
), pp.
189
200
.
7.
Coltman
,
J. W.
(
2003
). “
Acoustical losses in wet instrument bores
,”
J. Acoust. Soc. Am.
114
,
1221
.
8.
Dalmont
,
J. P.
,
Nederveen
,
C.
, and
Joly
,
N.
(
2001
). “
Radiation impedance of tubes with different flanges: Numerical and experimental investigations
,”
J. Sound Vib.
244
,
505
534
.
9.
Dickens
,
P.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2007
). “
Improved precision in measurements of acoustic impedance spectra using resonance-free calibration loads and controlled error distribution
,”
J. Acoust. Soc. Am.
121
(
3
),
1471
1481
.
10.
Dunn
,
H.
(
1961
). “
Methods of measuring vowel formant bandwidths
,”
J. Acoust. Soc. Am.
33
,
1737
1746
.
11.
Epps
,
J.
,
Smith
,
J.
, and
Wolfe
,
J.
(
1997
). “
A novel instrument to measure acoustic resonances of the vocal tract during phonation
,”
Meas. Sci. Technol.
8
(
10
),
1112
1121
.
12.
Fant
,
G.
(
1961
). “
The acoustics of speech
,” in
Proceedings of the International Conference on Acoustics
, Stuttgart, Germany, pp.
188
201
.
13.
Fant
,
G.
(
1970
).
Acoustic Theory of Speech Production with Calculations Based on X-ray Studies of Russian Articulations
(
Mouton
,
Hague, The Netherlands
), pp.
15
26
.
14.
Fant
,
G.
(
1972
). “
Vocal tract wall effects, losses, and resonance bandwidths
,” Quarterly Progress Status Report, Vol.
2
(
3
), Department of Speech, Music and Hearing, KTH, Stockholm, pp.
28
52
.
15.
Fant
,
G.
,
Ishizaka
,
K.
,
Lindqvist
,
J.
, and
Sundberg
,
J.
(
1972
). “
Subglottal formants
,” Quarterly Progress Status Report, Vol.
13
(
1
), Department of Speech, Music and Hearing, KTH, Stockholm, pp.
1
12
.
16.
Fant
,
G.
,
Nord
,
L.
, and
Branderud
,
P.
(
1976
). “
A note on the vocal tract wall impedance
,” Quarterly Progress Status Report, Vol.
17
(
4
), Department of Speech, Music and Hearing, KTH, Stockholm, pp.
13
20
.
17.
Fant
,
G.
, and
Sonesson
,
B.
(
1964
). “
Speech at high ambient air-pressure
,” Quarterly Progress Status Report, Vol.
5
(
2
), Department of Speech, Music and Hearing, KTH, Stockholm, pp.
9
21
.
18.
Fitch
,
W. T.
, and
Giedd
,
J.
(
1999
). “
Morphology and development of the human vocal tract: A study using magnetic resonance imaging
,”
J. Acoust. Soc. Am.
106
,
1511
1522
.
19.
Flanagan
,
J. L.
(
1972
).
Speech Analysis; Synthesis and Perception
(
Springer-Verlag
,
Berlin
).
20.
Fletcher
,
N. H.
, and
Rossing
,
T. D.
(
1998
).
The Physics of Musical Instruments
, 2nd ed. (
Springer
,
New York
), pp.
193
198
.
21.
Fujimura
,
O.
, and
Lindqvist
,
J.
(
1971
). “
Sweep-tone measurements of vocal-tract characteristics
,”
J. Acoust. Soc. Am.
49
,
541
558
.
22.
Hanna
,
N.
(
2014
). “
Investigations of the acoustics of the vocal tract and vocal folds in vivo, ex vivo and in vitro
,” UNSW, Australia and Université de Grenoble, France (https://tel.archives-ouvertes.fr/tel-01174056/), pp.
31
66
(Last viewed 5 November 2015).
23.
Hanna
,
N.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2012
). “
Low frequency response of the vocal tract: Acoustic and mechanical resonances and their losses
,” in
Proceedings of the Australian Acoustical Society
(
T. McGinn
,
Fremantle, Australia
), pp.
317
323
.
24.
Hanna
,
N. N.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2013
). “
Measurements of the aero-acoustic properties of the vocal folds and vocal tract during phonation into controlled acoustic loads
,”
Proc. Meet. Acoust.
19
,
060174
.
25.
Hanson
,
H. M.
, and
Chuang
,
E. S.
(
1999
). “
Glottal characteristics of male speakers: Acoustic correlates and comparison with female data
,”
J. Acoust. Soc. Am.
106
,
1064
1077
.
26.
Hawks
,
J. W.
, and
Miller
,
J. D.
(
1995
). “
A formant bandwidth estimation procedure for vowel synthesis
,”
J. Acoust. Soc. Am.
97
(
2
),
1343
1444
.
27.
Hoppe
,
U.
,
Rosanowski
,
F.
,
Döllinger
,
M.
,
Lohscheller
,
J.
,
Schuster
,
M.
, and
Eysholdt
,
U.
(
2003
). “
Glissando: Laryngeal motorics and acoustics
,”
J. Voice
17
(
3
),
370
376
.
28.
House
,
A. S.
, and
Stevens
,
K. N.
(
1958
). “
Estimation of formant bandwidths from measurements of transient response of the vocal tract
,”
J. Speech Hear. Res.
1
,
309
315
.
29.
Ishizaka
,
K.
,
French
,
J.
, and
Flanagan
,
J.
(
1975
). “
Direct determination of vocal tract wall impedance
,”
IEEE Trans. Acoust., Speech, Signal Process.
23
,
370
373
.
30.
Kewley-Port
,
D.
(
1983
). “
Time-varying features as correlates of place of articulation in stop consonants
,”
J. Acoust. Soc. Am.
73
,
322
335
.
31.
Kob
,
M.
(
2002
).
Physical Modeling of the Singing Voice
(
Universitätsbibliothek
,
Rheinisch-westfälische Technische Hochschule Aachen
), pp.
57
70
; available at http://sylvester.bth.rwth-aachen.de/dissertationen/2002/132/02_132.pdf (Last accessed 3 September 2014).
32.
Langford-Smith
,
F.
(
1963
).
Radiotron Designer's Handbook
, 6th ed. (
Amalgamated Wireless Valve Co. Pty. Ltd.
,
Sydney, Australia
), pp.
150
151
.
33.
Makarov
,
I.
, and
Sorokin
,
V.
(
2004
). “
Resonances of a branched vocal tract with compliant walls
,”
Acoust. Phys.
50
,
323
330
.
34.
Meltzner
,
G. S.
,
Kobler
,
J. B.
, and
Hillman
,
R. E.
(
2003
). “
Measuring the neck frequency response function of laryngectomy patients: Implications for the design of electrolarynx devices
,”
J. Acoust. Soc. Am.
114
,
1035
1047
.
35.
Peterson
,
G. E.
, and
Barney
,
H. L.
(
1952
). “
Control methods used in a study of the vowels
,”
J. Acoust. Soc. Am.
24
(
2
),
175
184
.
36.
Pham Thi Ngoc
,
Y.
, and
Badin
,
P.
(
1994
). “
Vocal tract acoustic transfer function measurements: Further developments and applications
,”
J. Phys. IV
C5
,
549
552
.
37.
Robb
,
M.
,
Yates
,
J.
, and
Morgan
,
E.
(B). (
1997
). “
Vocal tract resonance characteristics of adults with obstructive sleep apnea
,”
Acta oto-laryngologica
117
,
760
763
.
38.
Rothenberg
,
M.
(
1981
). “
An interactive model for the voice source
,” Quarterly Progress Status Report, Vol.
22
(
4
), Department of Speech, Music and Hearing, KTH, Stockholm, pp.
1
17
.
39.
Russell
,
G. O.
, and
Cotton
,
J. C.
(
1959
). “
Causes of good and bad voices
” (National Research Foundation, under a subsidy administered by the Carnegie Institute of Washington), pp.
70
71
.
40.
Savitzky
,
A.
, and
Golay
,
M. J. E.
(
1964
). “
Smoothing and differentiation of data by simplified least squares procedures
,”
Anal. Chem.
36
(
8
),
1627
1639
.
41.
Šidlof
,
P.
,
Švec
,
J. G.
,
Horáček
,
J.
,
Veselý
,
J.
,
Klepáček
,
I.
, and
Havlík
,
R.
(
2008
). “
Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production
,”
J. Biomech.
41
,
985
995
.
42.
Smith
,
J.
(
1995
). “
Phasing of harmonic components to optimize measured signal-to-noise ratios of transfer-functions
,”
Meas. Sci. Technol.
6
(
9
),
1343
1348
.
43.
Sondhi
,
M. M.
(
1974
). “
Model for wave propagation in a lossy vocal tract
,”
J. Acoust. Soc. Am.
55
,
1070
1075
.
44.
Sondhi
,
M. M.
(
1986
). “
Resonances of a bent vocal tract
,”
J. Acoust. Soc. Am.
79
(
4
),
1113
1116
.
4.
Story
,
B. H.
,
Titze
,
I. R.
, and
Hoffman
,
E. A.
(
1996
). “
Vocal tract area functions from magnetic resonance imaging
,”
J. Acoust. Soc. Am.
100
,
537
554
.
45.
Summerfield
,
Q.
,
Foster
,
J.
,
Tyler
,
R.
, and
Bailey
,
P. J.
(
1985
). “
Influences of formant bandwidth and auditory frequency selectivity on identification of place of articulation in stop consonants
,”
Speech Commun.
4
(
1–3
),
213
229
.
46.
Swerdlin
,
Y.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2010
). “
The effect of whisper and creak vocal mechanisms on vocal tract resonances
,”
J. Acoust. Soc. Am.
127
,
2590
2598
.
47.
Tarnóczy
,
T. H.
(
1962
). “
Vowel formant bandwidths and synthetic vowels
,”
J. Acoust. Soc. Am.
34
,
859
860
.
48.
Titze
,
I. R.
,
Baken
,
R. J.
,
Bozeman
,
K.
,
Granqvist
,
S.
,
Henrich
,
N.
,
Herbst
,
C. T.
,
Howard
,
D. M.
,
Hunter
,
E. J.
,
Kaelin
,
D.
,
Kent
,
R.
,
Kreiman
,
J.
,
Kob
,
M.
,
Löfqvist
,
A.
,
McCoy
,
S.
,
Miller
,
D. G.
,
Noé
,
H.
,
Scherer
,
R. C.
,
Smith
,
J. R.
,
Story
,
B. H.
,
Svec
,
J. G.
,
Ternström
,
S.
, and
Wolfe
,
J.
(
2015
). “
Toward a consensus on symbolic notation of harmonics, resonances, and formants in vocalization
,”
J. Acoust. Soc. Am.
137
,
3005
3007
.
49.
Van den Berg
,
J.
(
1955
). “
Transmission of the vocal cavities
,”
J. Acoust. Soc. Am.
27
,
161
168 (1955)
.
50.
Wakita
,
H.
, and
Fant
,
G.
(
1978
). “
Toward a better vocal tract model
,” Quarterly Progress Status Report, Vol.
19
(
1
), Department of Speech, Music and Hearing, KTH, Stockholm, pp.
9
29
.
51.
Wodicka
,
G. R.
,
Stevens
,
K. N.
,
Golub
,
H. L.
, and
Shannon
,
D. C.
(
1990
). “
Spectral characteristics of sound transmission in the human respiratory system
,”
IEEE Trans. Biomed. Eng.
37
(
12
),
1130
1135
.
52.
Wolfe
,
J.
,
Almeida
,
A.
,
Chen
,
J. M.
,
George
,
D.
,
Hanna
,
N. N.
, and
Smith
,
J.
(
2013
). “
The player-wind instrument interaction
,” in
Proceedings of the Stockholm Music Acoustics Conference
, Stockholm, Sweden, pp.
323
330
.
53.
Wu
,
L.
,
Xiao
,
K.
,
Dong
,
J.
,
Wang
,
S.
, and
Wan
,
M.
(
2014
). “
Measurement of the sound transmission characteristics of normal neck tissue using a reflectionless uniform tube
,”
J. Acoust. Soc. Am.
136
,
350
356
.
You do not currently have access to this content.