A hierarchical Gaussian mixture model is proposed to characterize shallow water acoustic response functions that are time-varying and sparse. The mixture model is based on the assumption that acoustic paths can be partitioned into two sets. The first is a relatively coherent set of arrivals that on average exhibit Doppler spreading about a mean Doppler and the remaining set is of multiple surface scattered paths that exhibit a spectrally flat Doppler. The hierarchy establishes constraints on the parameters of each of these Gaussian models such that coherent components of the response are both sparse and in the ensemble obey the Doppler spread profile. This is accomplished with a Bernoulli model that indicates the ensonification state of each element in the bi-frequency representation of the acoustic response function. Estimators of the time-varying acoustic response for the full duration of a broadband transmission are developed and employed to compensate for the shared time-varying dilation process among the coherent arrivals. The approach ameliorates response coherence degradation and can be employed to enhance coherent multi-path combining and is a useful alternative to time recursive estimation. The model is tested with acoustic communication recordings taken in shallow water at low signal-to-noise ratios.

1.
T. H.
Eggen
,
A. B.
Baggeroer
, and
J. C.
Preisig
, “
Communication over Doppler spread channels. Part I: Channel and receiver presentation
,”
IEEE J. Ocean Eng.
25
(
1
),
62
71
(
2000
).
2.
A.
Song
,
M.
Badiey
,
H. C.
Song
,
W. S.
Hodgkiss
,
M. B.
Porter
, and
the KauaiEx Group3
, “
Impact of ocean variability on coherent underwater acoustic communications during the Kauai experiment (KauaiEx)
,”
J. Acoust. Soc. Am.
123
,
856
865
(
2008
).
3.
M.
Stojanovic
,
J.
Catipovic
, and
J. G.
Proakis
, “
Adaptive multichannel combining and equalization for underwater acoustic communications
,”
J. Acoust. Soc. Am.
94
,
1621
1634
(
1993
).
4.
D.
Rouseff
,
M.
Badiey
, and
A.
Song
, “
Effect of reflected and refracted signals on coherent underwater acoustic communications: Results from the Kauai experiment (KauaiEx 2003)
,”
J. Acoust. Soc. Am.
126
,
2359
2366
(
2009
).
5.
T. H.
Eggen
,
J. C.
Preisig
, and
A. B.
Baggeroer
, “
Communication over Doppler spread channels. Part II: Receiver characterization and practical results
,”
IEEE J. Oceanic Eng.
26
(
4
),
612
621
(
2001
).
6.
B.
Gragg
, “
The influence of environmental and source motion on broadband acoustic correlations: A normal mode approach
,”
J. Acoust. Soc. Am.
74
,
S120
(
1983
).
7.
B.
Gragg
, “
Doppler sidebands in the cross-spectral density of narrow-band reverberation from a dynamic sea-surface
,”
J. Acoust. Soc. Am.
114
(
3
),
1387
1394
(
2003
).
8.
P.
Roux
,
R. L.
Culver
, and
S.
Walker
, “
Application of the coherent-to-incoherent intensity ratio to estimation of ocean surface roughness from high-frequency shallow-water propagation measurements
,”
J. Acoust. Soc. Am.
127
(
3
),
1258
1266
(
2010
).
9.
S. H.
Huang
,
T. C.
Yang
, and
C.-F.
Huang
, “
Multipath correlations in underwater acoustic communication channels
,”
J. Acoust. Soc. Am.
133
(
4
),
2180
2190
(
2013
).
10.
S.
Haykin
,
Adaptive Filter Theory, 5th ed., Prentice Hall Information and System Sciences Series
(
Prentice-Hall
,
Upper Saddle River, NJ
,
1996
), 912 pp.
11.
J.
Proakis
,
Digital Communications
(
McGraw-Hill, Inc.
,
New York
,
2000
), Chap. 11, pp.
636
674
.
12.
P. J.
Brockwell
and
R. A.
Davis
,
Time Series: Theory and Methods
, 2nd ed. (
Springer-Verlag
,
New York
,
1991
),
577
pp.
13.
M.
Stojanovic
,
J.
Catapovic
, and
J. G.
Proakis
, “
Phase-coherent digital communications for underwater acoustic channels
,”
IEEE J. Ocean Eng.
19
(
11
),
100
111
(
1994
).
14.
M.
Stojanovic
, “
Multichannel detection for wideband underwater acoustic CDMA communications
,”
J. Ocean. Eng.
31
(
3
),
685
695
(
2006
).
15.
S. H.
Abadi
,
D.
Rouseff
, and
D. R.
Dowling
, “
Blind deconvolution for robust signal estimation and approximate source localization
,”
J. Acoust. Soc. Am.
131
,
2599
2610
(
2012
).
16.
P.
Hursky
,
W. S.
Hodgkiss
, and
W. A.
Kuperman
, “
Matched field processing with data derived modes
,”
J. Acoust. Soc. Am.
109
,
1355
1366
(
2001
).
17.
R. J.
Iltis
, “
A sparse Kalman filter with application to acoustic communications channel estimation
,” in Oceans 2006, Boston, MA (September 18–21,
2006
).
18.
D. M.
Titterington
,
A. F.
Smith
, and
U. E.
Makov
,
Statistical Analysis of Finite Mixture Distributions, in John Wiley Series in Probability and Statistics—Applied Probability
(
John Wiley & Sons
,
Somerset, NJ
,
1986
),
254
pp.
19.
P. A.
Bello
, “
Characterization of randomly time-variant linear channels
,”
IEEE Trans. Commun. Syst.
11
(
4
),
360
393
(
1963
).
20.
L. J.
Ziomek
and
L. H.
Sibul
, “
Broadband and narrow-band signal-to-interference ratio expressions for a doubly spread target
,”
J. Acoust. Soc. Am.
72
(
3
),
804
819
(
1982
).
21.
P. J.
Gendron
, “
An empirical Bayes estimator for in-scale adaptive filtering
,”
IEEE Trans. Signal Process.
53
(
5
),
1670
1683
(
2005
).
22.
N. L.
Johnson
,
S.
Kotz
, and
N.
Balakrishnan
,
Continuous Univariate Distributions
, 2nd ed. (
John Wiley & Sons, Inc.
,
New York
,
1994
), Vol. 1.
23.
T. W.
Anderson
,
An Introduction to Multivariate Statistical Analysis
, 3rd ed. (
John Wiley & Sons, Inc.
,
New York
,
2003
).
24.
A.
van den Bos
, “
The multivariate complex normal distribution—A generalization
,”
IEEE Trans. Inf. Theory
41
(
2
),
537
539
(
1995
).
25.
N. L.
Johnson
,
S.
Kotz
, and
N.
Balakrishnan
,
Continuous Univariate Distributions
, 2nd ed. (
John Wiley & Sons, Inc.
,
New York
,
1994
), Vol. 2.
26.
A.
Gelman
and
J.
Hill
,
Data Analysis Using Regression and Multilevel/Hierarchical Models
, 1st ed. (
Cambridge University Press
,
London
,
2006
).
27.
E.
Vanem
,
E. M.
Bitner-Gregersen
, and
C. K.
Wikle
,
Bayesian Hierarchical Space-Time Models with Application to Significant Wave Height, in Springer Science & Business Media
(
Springer
,
New York
,
2013
), Chap. 3, pp.
65
93
.
28.
M. C.
March
,
Advanced Statistical Methods for Astrophysical Probes of Cosmology
(
Springer Verlag, Berlin
,
2015
).
29.
J. S.
Clark
and
A.
Gelfand
,
Hierarchical Modelling for the Environmental Sciences: Statistical Methods and Applications
(
Oxford Biology
, Oxford, UK,
2006
).
30.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics, in AIP Series in Modern Acoustics and Signal Processing
(
AIP Press
,
Melville, NY
,
2011
),
794
pp.
31.
R.
Gold
, “
Optimal binary sequences for spread spectrum multiplexing (Corresp.)
,”
IEEE Trans. Inf. Theory
13
(
4
),
619
621
(
1967
).
32.
H. F.
Harmouth
, “
Applications of Walsh functions in communications
,”
IEEE Spectrum Magazine
6
(
11
),
62
91
(
1969
).
33.
N.
Suehiro
, “
Pseudo-polyphase orthogonal sequence sets with good cross-correlation property
,”
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes Lecture Notes in Computer Science
508
(
1991
),
106
112
(
2005
).
34.
B.
Vidakovic
, “
Nonlinear wavelet shrinkage with Bayes rules and Bayes factors
,”
J. Am. Stat. Assoc.
93
(
441
),
173
179
(
1998
).
You do not currently have access to this content.