The skewness of the first time derivative of a pressure waveform, or derivative skewness, has been used previously to describe the presence of shock-like content in jet and rocket noise. Despite its use, a quantitative understanding of derivative skewness values has been lacking. In this paper, the derivative skewness for nonlinearly propagating waves is investigated using analytical, numerical, and experimental methods. Analytical expressions for the derivative skewness of an initially sinusoidal plane wave are developed and, along with numerical data, are used to describe its behavior in the preshock, sawtooth, and old-age regions. Analyses of common measurement issues show that the derivative skewness is relatively sensitive to the effects of a smaller sampling rate, but less sensitive to the presence of additive noise. In addition, the derivative skewness of nonlinearly propagating noise is found to reach greater values over a shorter length scale relative to sinusoidal signals. A minimum sampling rate is recommended for sinusoidal signals to accurately estimate derivative skewness values up to five, which serves as an approximate threshold indicating significant shock formation.

1.
D. T.
Blackstock
, “
Nonlinear propagation of jet noise
,” in
Proceedings of the Third Interagency Symposium on University Research in Transportation Noise
, University of Utah, Salt Lake City, UT (
1975
), pp.
389
397
.
2.
C. L.
Morfey
and
G. P.
Howell
, “
Nonlinear propagation of aircraft noise in the atmosphere
,”
AIAA J.
19
,
986
992
(
1981
).
3.
K. L.
Gee
,
V. W.
Sparrow
,
M. M.
James
,
J. M.
Downing
,
C. M.
Hobbs
,
T. B.
Gabrielson
, and
A. A.
Atchley
, “
The role of nonlinear effects in the propagation of noise from high-power jet aircraft
,”
J. Acoust. Soc. Am.
123
,
4082
4093
(
2008
).
4.
K. L.
Gee
,
J. M.
Downing
,
M. M.
James
,
R. C.
McKinley
,
R. L.
McKinley
,
T. B.
Neilsen
, and
A. T.
Wall
, “
Nonlinear evolution of noise from a military jet aircraft during ground run-up
,” AIAA paper No. 2012–2258 (
2012
).
5.
B. P.
Petitjean
and
D. K.
McLaughlin
, “
Experiments on the nonlinear propagation of noise from supersonic jets
,” AIAA paper No. 2003–3127 (
2003
).
6.
B. P.
Petitjean
,
K.
Viswanathan
, and
D. K.
McLaughlin
, “
Acoustic pressure waveforms measured in high speed jet noise experiencing nonlinear propagation
,”
Int. J. Aeroacoust.
5
,
193
215
(
2006
).
7.
B.
Greska
and
A.
Krothapalli
, “
On the far-field propagation of high-speed jet noise
,”
Proceedings of NCAD2008
, paper No. NCAD2008–73071 (
2008
).
8.
W. J.
Baars
,
C. E.
Tinney
,
M. S.
Wochner
, and
M. F.
Hamilton
, “
On cumulative acoustic waveform distortions from high-speed jets
,”
J. Fluid Mech.
749
,
331
366
(
2014
).
9.
J. E.
Ffowcs-Williams
,
J.
Simson
, and
V. J.
Virchis
, “
 ‘Crackle’: An annoying component of jet noise
,”
J. Fluid Mech.
71
,
251
271
(
1975
).
10.
M. R.
Shepherd
,
K. L.
Gee
, and
A. D.
Hanford
, “
Evolution of statistical properties for a nonlinearly propagating sinusoid
,”
J. Acoust. Soc. Am.
130
,
EL8
EL13
(
2011
).
11.
S. N.
Gurbatov
and
A. N.
Malakhov
, “
Statistical characteristics of random quasi-monochromatic waves in non-linear media
,”
Sov. Phys. Acoust.
23
,
325
329
(
1977
).
12.
K. L.
Gee
,
T. B.
Neilsen
, and
A. A.
Atchley
, “
Skewness and shock formation in laboratory-scale supersonic jet data
,”
J. Acoust. Soc. Am.
133
,
EL491
EL497
(
2013
).
13.
P.
Mora
,
N.
Heeb
,
J.
Kastner
,
E. J.
Gutmark
, and
K.
Kailasanath
, “
Near and far field pressure skewness and kurtosis in heated supersonic jets from round and chevron nozzles
,” in
Proceedings of ASME Turbo Expo 2013
, paper No. GT2013-95774 (
2013
).
14.
S. A.
McInerny
,
K. L.
Gee
,
J. M.
Downing
, and
M. M.
James
, “
Acoustical nonlinearities in aircraft flyover data
,” AIAA paper No. 2007–3654 (
2007
).
15.
S. A.
McInerny
,
M.
Downing
,
C.
Hobbs
, and
M.
Hannon
, “
Metrics that characterize nonlinearity in jet noise
,”
AIP Conf. Proc.
838
,
560
563
(
2006
).
16.
O. V.
Rudenko
and
S. I.
Soluyan
,
Theoretical Foundations of Nonlinear Acoustics
(
Plenum
,
New York
,
1977
).
17.
S. N.
Gurbatov
,
A. N.
Malakhov
, and
N. V.
Pronchatov-Rubtsov
, “
Evolution of higher-order spectra of nonlinear random waves
,”
Radiophys. Quantum Electron.
29
,
523
528
(
1986
).
18.
D. A.
Hennessy
, “
Crop yield skewness under law of the minimum technology
,”
Am. J. Agr. Econ.
91
,
197
208
(
2009
).
19.
J.
Chen
,
H.
Hong
, and
J. C.
Stein
, “
Forcasting crashes: Trading volume, past returns, and conditional skewness in stock prices
,”
J. Financ. Econ.
61
,
345
381
(
2001
).
20.
K. R.
Sreenivasan
and
S.
Tavoularis
, “
On the skewness of the temperature derivative in turbulent flows
,”
J. Fluid Mech.
101
,
783
795
(
1980
).
21.
S.
Tavoularis
,
J. C.
Bennett
, and
S.
Corrsin
, “
Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence
,”
J. Fluid Mech.
88
,
63
69
(
1978
).
22.
C. W.
Van Atta
and
R. A.
Antonia
, “
Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives
,”
Phys. Fluids
23
,
252
257
(
1980
).
23.
K. L.
Gee
,
V. W.
Sparrow
,
A. A.
Atchley
, and
T. B.
Gabrielson
, “
On the perception of crackle in high-amplitude jet noise
,”
AIAA J.
45
,
593
598
(
2007
).
24.
S. A.
McInerny.
Launch vehicle acoustics. II—Statistics of the time domain data
,”
J. Aircraft
33
,
518
523
(
1996
).
25.
K. L.
Gee
,
T. B.
Neilsen
,
M. B.
Muhlestein
,
A. T.
Wall
,
J. M.
Downing
,
M. M.
James
, and
R. L.
McKinley
, “
Propagation of crackle-containing jet noise from high-performance engines
,”
Noise Control Eng. J.
64
,
1
12
(
2016
).
26.
P.
Mora
,
N.
Heeb
,
J.
Kastner
,
E.
Gutmark
, and
K.
Kailasanath
, “
Impact of heat on the pressure skewness and kurtosis in supersonic jets
,”
AIAA J.
52
,
777
787
(
2014
).
27.
M. B.
Muhlestein
and
K. L.
Gee
, “
Experimental investigation of a characteristic shock formation distance in finite-amplitude noise propagation
,”
POMA
12
,
045002
(
2014
).
28.
M. B.
Muhlestein
,
K. L.
Gee
,
T. B.
Neilsen
, and
D. C.
Thomas
, “
Evolution of the average steepening factor for nonlinearly propagating waves
,”
J. Acoust. Soc. Am.
137
,
640
650
(
2015
).
29.
S.
Earnshaw
, “
On the mathematical theory of sound
,”
Trans. R. Soc. London
150
,
133
148
(
1860
).
30.
E.
Fubini
, “
Anomalie nella propagazione di ande acustiche de grande apiezza
” (“Anomalies in acoustic wave propagation of large amplitude”),
Alta Frequenza
4
,
530
581
(
1935
) [English translation: R. T. Beyer, Nonlinear Underwater Sound, 118–177 (1984)].
31.
R. D.
Fay
, “
Plane sound waves of finite amplitude
,”
J. Acoust. Soc. Am.
3
,
222
241
(
1931
).
32.
W. J.
Baars
and
C. E.
Tinney
, “
Shock-structures in the acoustic field of a Mach 3 jet with crackle
,”
J. Sound Vib.
333
,
2539
2553
(
2014
).
33.
D. T.
Blackstock
,
M. F.
Hamilton
, and
A. D.
Pierce
, “
Progressive waves in lossless and lossy fluids
,” in
Nonlinear Acoustics
(1998), Chap. 4, pp. 65–150.
34.
R. O.
Cleveland
, “
Propagation of sonic booms through a real, stratified atmosphere
,” Ph.D. dissertation,
Department of Mechanical Engineering, The University of Texas at Austin
, Austin,
1995
.
35.
Loubeau
,
A.
Sparrow
,
V. W.
Pater
,
L. L.
, and
Wright
,
W. M.
, “
High-frequency measurements of blast wave propagation
,”
J. Acoust. Soc. Am.
120
,
EL29
EL35
(
2006
).
36.
S. A.
McInerny
and
S. M.
Olcmen
, “
High intensity rocket noise: Nonlinear propagation, atmospheric absorption, and characterization
,”
J. Acoust. Soc. Am.
117
,
578
591
(
2005
).
37.
D. T.
Blackstock
, “
Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude
,”
J. Acoust. Soc. Am.
39
,
1019
1026
(
1966
).
38.
J. A.
Gallagher
and
D. K.
McLaughlin
, “
Experiments on the nonlinear characteristics of noise propagation from low and moderate Reynolds number supersonic jets
,” in
7th Aeroacoustics Conference
(1981), pp.
1981
2041
.
39.
S. N.
Gurbatov
and
O. V.
Rudenko
, “
Statistical phenomena
,” in
Nonlinear Acoustics
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Academic Press
,
San Diego
,
1998
), Chap.
13
, pp.
377
398
.
40.
F. M.
Pestorius
and
D. T.
Blackstock
, “
Propagation of finite-amplitude noise
,” in
proceedings of Finite-Amplitude Wave Effects in Fluids
, Copenhagen (
1973
), pp.
24
29
.
41.
M. B.
Muhlestein
and
K. L.
Gee
, “
Evolution of the temporal slope density function for waves propagating according to the inviscid Burgers equation
,”
J. Acoust. Soc. Am.
139
(2),
958
967
(
2016
).
You do not currently have access to this content.