Auditory localization research needs to be performed in more realistic testing environments to better capture the real-world abilities of listeners and their hearing devices. However, there are significant challenges involved in controlling the audibility of relevant target signals in realistic environments. To understand the important aspects influencing target detection in more complex environments, a reverberant room with a multi-talker background was simulated and presented to the listener in a loudspeaker-based virtual sound environment. Masked thresholds of a short speech stimulus were measured adaptively for multiple target source locations in this scenario. It was found that both distance and azimuth of the target source have a strong influence on the masked threshold. Subsequently, a functional model was applied to analyze the factors influencing target detectability. The model is comprised of an auditory front-end that generates an internal representation of the stimuli in both ears, followed by a decision device combining d information across time, frequency and both ears. The model predictions of the masked thresholds were overall in very good agreement with the experimental results. An analysis of the model processes showed that head shadow effects, signal spectrum, and reverberation have a strong impact on target audibility in the given scenario.

1.
Akeroyd
,
M. A.
, and
Guy
,
F. H.
(
2011
). “
The effect of hearing impairment on localization dominance for single-word stimuli
,”
J. Acoust. Soc. Am.
130
,
312
323
.
2.
American National Standard Institute
(
1997
). ANSI S3.5-1997,
American National Standard Methods for Calculation of the Speech Intelligibility Index
(
American National Standard Institute
,
New York
).
3.
Best
,
V.
,
Carlile
,
S.
,
Kopčo
,
N.
, and
van Schaik
,
A.
(
2011
). “
Localization in speech mixtures by listeners with hearing loss
,”
J. Acoust. Soc. Am.
129
,
EL210
EL215
.
4.
Blauert
,
J.
(
1997
).
Spatial Hearing
(
MIT Press
,
Cambridge
), pp.
372
392
.
5.
Breebaart
,
J.
,
van de Par
,
S.
, and
Kohlrausch
,
A.
(
2001
). “
Binaural processing model based on contralateral inhibition. I. Model structure
,”
J. Acoust. Soc. Am.
110
,
1074
1088
.
6.
Buus
,
S.
,
Florentine
,
M.
, and
Poulsen
,
T.
(
1997
). “
Temporal integration of loudness, loudness discrimination, and the form of the loudness function
,”
J. Acoust. Soc. Am.
101
,
669
680
.
7.
Buus
,
S.
,
Schorer
,
E.
,
Florentine
,
M.
, and
Zwicker
,
E.
(
1986
). “
Decision rules in detection of simple and complex tones
,”
J. Acoust. Soc. Am.
80
,
1646
1657
.
8.
Byrne
,
D.
, and
Noble
,
W.
(
1998
). “
Optimizing sound localization with hearing aids
,”
Trends Amplif.
3
,
51
73
.
9.
Colburn
,
H. S.
(
1996
). “
Computational models of binaural processing
,” in
Auditory Computation
, edited by
H. L.
Hawkins
,
T. A.
McMullen
,
A. N.
Popper
, and
R. R.
Fay
, Vol. 6 of Springer Handbook of Auditory Research (
Springer
,
New York
), pp.
332
400
.
10.
Dau
,
T.
,
Püschel
,
D.
, and
Kohlrausch
,
A.
(
1996
). “
A quantitative model of the effective signal processing in the auditory system. I. Model structure
,”
J. Acoust. Soc. Am.
99
,
3615
3622
.
11.
Dillon
,
H.
(
2012
).
Hearing Aids
, 2nd ed. (
Thieme
,
New York)
, pp.
370
403
.
12.
Durlach
,
N. I.
(
1963
). “
Equalization and cancellation theory of binaural masking-level differences
,”
J. Acoust. Soc. Am.
35
,
1206
1218
.
13.
Fastl
,
H.
, and
Zwicker
,
E.
(
2007
).
Psychoacoustics: Facts and Models
(
Springer
,
Berlin, Germany
), pp.
203
238
.
14.
Favrot
,
S.
, and
Buchholz
,
J.
(
2010
). “
LoRA: A loudspeaker-based room auralization system
,”
Acta Acust. Acust.
96
,
364
375
.
15.
Fletcher
,
H.
(
1940
). “
Auditory Patterns
,”
Rev. Mod. Phys.
12
,
47
65
.
16.
Florentine
,
M.
, and
Buus
,
S.
(
1981
). “
An excitation-pattern model for intensity discrimination
,”
J. Acoust. Soc. Am.
70
,
1646
1654
.
17.
Florentine
,
M.
,
Buus
,
S.
, and
Geng
,
W.
(
1999
). “
Psychometric functions for gap detection in a yes-no procedure
,”
J. Acoust. Soc. Am.
106
,
3512
3520
.
18.
Freyman
,
R. L.
,
Helfer
,
K. S.
,
McCall
,
D. D.
, and
Clifton
,
R. K.
(
1999
). “
The role of perceived spatial separation in the unmasking of speech
,”
J. Acoust. Soc. Am.
106
,
3578
3588
.
19.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
1990
). “
Derivation of auditory filter shapes from notched-noise data
,”
Hear. Res.
47
,
103
138
.
20.
Hacker
,
M. J.
, and
Ratcliff
,
R.
(
1979
). “
A revised table of d for M-alternative forced choice
,”
Percept. Psychophys.
26
,
168
170
.
21.
Hant
,
J. J.
, and
Alwan
,
A.
(
2003
). “
A psychoacoustic-masking model to predict the perception of speech-like stimuli in noise
,”
Speech Commun.
40
,
291
313
.
22.
Hant
,
J. J.
,
Strope
,
B. P.
, and
Alwan
,
A. A.
(
1997
). “
A psychoacoustic model for the noise masking of plosive bursts
,”
J. Acoust. Soc. Am.
101
,
2789
2802
.
23.
Häusler
,
R.
,
Colburn
,
S.
, and
Marr
,
E.
(
1983
). “
Sound localization in subjects with impaired hearing
,”
Acta Oto-Laryngol.
96
,
1
62
.
24.
Jepsen
,
M. L.
,
Ewert
,
S. D.
, and
Dau
,
T.
(
2008
). “
A computational model of human auditory signal processing and perception
,”
J. Acoust. Soc. Am.
124
,
422
438
.
25.
Keidser
,
G.
,
Rohrseitz
,
K.
,
Dillon
,
H.
,
Hamacher
,
V.
,
Carter
,
L.
,
Rass
,
U.
, and
Convery
,
E.
(
2006
). “
The effect of multi-channel wide dynamic range compression, noise reduction, and the directional microphone on horizontal localization performance in hearing aid wearers
,”
Int. J. Audiol.
45
,
563
579
.
26.
Kopco
,
N.
,
Best
,
V.
, and
Carlile
,
S.
(
2010
). “
Speech localization in a multitalker mixture
,”
J. Acoust. Soc. Am.
127
,
1450
1457
.
27.
Le Goff
,
N.
,
Buchholz
,
J. M.
, and
Dau
,
T.
(
2013
). “
Modeling horizontal localization of complex sounds in the impaired and aided impaired auditory system
,” in
The Technology of Binaural Listening
, edited by
J.
Blauert
(
Springer
,
Berlin, Germany
), pp.
121
144
.
28.
Levitt
,
H.
(
1971
). “
Transformed up-down methods in psychoacoustics
,”
J. Acoust. Soc. Am.
49
,
467
477
.
29.
Lorenzi
,
C.
,
Gatehouse
,
S.
, and
Lever
,
C.
(
1999
). “
Sound localization in noise in hearing-impaired listeners
,”
J. Acoust. Soc. Am.
105
,
3454
3463
.
30.
Meddis
,
R.
(
1988
). “
Simulation of auditory-neural transduction
,”
J. Acoust. Soc. Am.
83
,
1056
1063
.
31.
Minaar
,
P.
,
Favrot
,
S.
, and
Buchholz
,
J.
(
2010
). “
Improving hearing aids through listening tests in a virtual sound environment
,”
Hear. J.
63
,
40
44
.
32.
Moore
,
B. C. J.
(
2003
).
An Introduction to the Psychology of Hearing
, 5th ed. (
Academic Press
,
London, UK
), pp.
65
126
.
33.
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
(
1983
). “
Suggested formulae for calculating auditory-filter bandwidths and excitation patterns
,”
J. Acoust. Soc. Am.
74
,
750
753
.
34.
Noble
,
W.
,
Byrne
,
D.
, and
Lepage
,
B.
(
1994
). “
Effects on sound localization of configuration and type of hearing impairment
,”
J. Acoust. Soc. Am.
95
,
992
1005
.
35.
Noble
,
W.
, and
Gatehouse
,
S.
(
2006
). “
Effects of bilateral versus unilateral hearing aid fitting on abilities measured by the speech, spatial, and qualities of hearing scale (SSQ)
,”
Int. J. Audiol.
45
,
172
181
.
36.
Noble
,
W.
,
Ter-Horst
,
K.
, and
Byrne
,
D.
(
1995
). “
Disabilities and handicaps associated with impaired auditory localization
,”
J. Am. Acad. Audiol.
6
,
129
140
.
37.
Patterson
,
R. D.
,
Nimmo-Smith
,
I.
,
Weber
,
D. L.
, and
Milroy
,
R.
(
1982
). “
The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram, and speech threshold
,”
J. Acoust. Soc. Am.
72
,
1788
1803
.
38.
Rindel
,
J.
(
2000
). “
The use of computer modeling in room
,”
J. Vibroeng.
3
,
41
72
.
39.
Rosenhall
,
U.
(
1985
). “
The influence of hearing loss on directional hearing
,”
Scand. Audiol.
14
,
187
189
.
40.
Scharf
,
B.
(
1961
). “
Loudness summation and spectrum shape
,”
J. Acoust. Soc. Am.
33
,
838
839
.
41.
Seeber
,
B. U.
,
Kerber
,
S.
, and
Hafter
,
E. R.
(
2010
). “
A system to simulate and reproduce audio-visual environments for spatial hearing research
,”
Hear. Res.
260
,
1
10
.
42.
Shailer
,
M. J.
, and
Moore
,
B. C. J.
(
1987
). “
Gap detection and the auditory filter: Phase effects using sinusoidal stimuli
,”
J. Acoust. Soc. Am.
81
,
1110
1117
.
43.
van den Bogaert
,
T.
,
Carette
,
E.
, and
Wouters
,
J.
(
2011
). “
Sound source localization using hearing aids with microphones placed behind-the-ear, in-the-canal, and in-the-pinna
,”
Int. J. Audiol.
50
,
164
176
.
44.
van den Bogaert
,
T.
,
Klasen
,
T. J.
,
Moonen
,
M.
,
van Deun
,
L.
, and
Wouters
,
J.
(
2006
). “
Horizontal localization with bilateral hearing aids: Without is better than with
,”
J. Acoust. Soc. Am.
119
,
515
526
.
45.
Viemeister
,
N. F.
, and
Wakefield
,
G. H.
(
1991
). “
Temporal integration and multiple looks
,”
J. Acoust. Soc. Am.
90
,
858
865
.
46.
Wiggins
,
I. M.
, and
Seeber
,
B. U.
(
2012
). “
Effects of dynamic-range compression on the spatial attributes of sounds in normal-hearing listeners
,”
Ear Hear.
33
,
399
410
.
47.
Zurek
,
P. M.
,
Freyman
,
R. L.
, and
Balakrishnan
,
U.
(
2004
). “
Auditory target detection in reverberation
,”
J. Acoust. Soc. Am.
115
,
1609
1620
.
48.
Zwicker
,
E.
(
1956
). “
Die elementaren Grundlagen zur Bestimmung der Informationskapazität des Gehörs” (“The elementary basis for determining the information capacity of hearing”),
Acustica
6
,
365
381
.
49.
Zwislocki
,
J. J.
(
1969
). “
Temporal summation of loudness: An analysis
,”
J. Acoust. Soc. Am.
46
,
431
441
.
You do not currently have access to this content.