Seabed parameters are inverted from ambient noise measurements at two shallow tropical environments with dissimilar seabed characteristics, a silty and a sandy seabed, using an approach that matches the measured and modeled complex vertical coherence. Coherence is modeled using the Green's function output from the model oases, along with theoretical formulation, for a range independent environment. Genetic algorithm is used to search the model parameter space consisting of sound speed, density, and attenuation in the sediment layers and half-space. Reasonable estimates have been obtained for the silty site, whereas the sandy site gave relatively poor parameter estimates due to reflective seabed and shipping interference.

1.
M. J.
Buckingham
and
S. A. S.
Jones
, “
A new shallow ocean technique for determining the critical angle of the seabed from the vertical directionality of the ambient noise in the water column
,”
J. Acoust. Soc. Am.
81
(
4
),
938
946
(
1987
).
2.
G. B.
Deane
,
M. J.
Buckingham
, and
C. T.
Tindle
, “
Vertical coherence of ambient noise in shallow water overlying a fluid sea bed
,”
J. Acoust. Soc. Am.
102
(
6
),
3413
3424
(
1997
).
3.
N. M.
Carbone
,
G. B.
Deane
, and
M. J.
Buckingham
, “
Estimating the compressional and shear wave speeds of a shallow water seabed from the vertical coherence of ambient noise in the water column
,”
J. Acoust. Soc. Am.
103
(
2
),
801
813
(
1998
).
4.
C. H.
Harrison
and
D. G.
Simons
, “
Geoacoustic inversion of ambient noise: A simple method
,”
J. Acoust. Soc. Am.
112
(
4
),
1377
1389
(
2002
).
5.
N. H.
Hashimi
, “
Comparative study of the moment and graphic size parameters of the sediments of the western continental shelf of India
,”
J. Int. Assn. Math. Geol.
13
(
4
),
291
301
(
1981
).
6.
S.
Manokaran
,
P.
Mishra
,
S. A.
Khan
,
K. G. M. T
Ansari
, and
S.
Raju
, “
Textural characteristics of shelf surface sediments of southeast coast of India
,”
Ind. J. Mar. Sci.
43
,
961
970
(
2014
).
7.
H.
Schmidt
,
oases, Version 3.1, User Guide and Reference Manual
(
MIT
,
Cambridge, MA
,
2004
).
8.
F.
Desharnais
,
M. L.
Drover
, and
C. A.
Gillard
, “
Acoustics 2002 – Innovations in Acoustics and Vibration
,” in
Annual Conference of the Australian Acoustical Society,
Adelaide, Australia
(November 13–15,
2002
).
9.
D. F.
Gingras
and
P.
Gerstoft
, “
Inversion for geometric and geoacoustic parameters in shallow water: Experimental results
,”
J. Acoust. Soc. Am.
97
(
6
),
3589
3598
(
1995
).
10.
P.
Gerstoft
, “
Inversion of seismoacoustic data using genetic algorithms and aposteriori probability distributions
,”
J. Acoust. Soc. Am.
95
(
2
),
770
782
(
1994
).
11.
P.
Ratilal
,
P.
Gerstoft
, and
J. T.
Goh
, “
Subspace approach to inversion by genetic algorithms involving multiple frequencies
,”
J. Comput. Acoust.
06
,
99
115
(
1998
).
12.
M.
Siderius
,
P. L.
Nielsen
, and
P.
Gerstoft
, “
Range-dependent seabed characterization by inversion of acoustic data from a towed receiver array
,”
J. Acoust. Soc. Am.
109
(
5
),
2394
(
2001
).
13.
G. R.
Potty
,
J. H.
Miller
, and
J. F.
Lynch
, “
Inversion for sediment geoacoustic properties at the New England Bight
,”
J. Acoust. Soc. Am.
114
(
4
),
1874
1887
(
2003
).
14.
G. R.
Potty
,
J. H.
Miller
,
P. H.
Dahl
, and
C. J.
Lazauski
, “
Geoacoustic inversion results from the ASIAEX East China Sea experiment
,”
IEEE J. Ocean. Eng.
29
(
4
),
1000
1010
(
2004
).
15.
E. L.
Hamilton
, “
Geoacoustic modeling of the seafloor
,”
J. Acoust. Soc. Am.
68
(
5
),
1313
1340
(
1980
).
You do not currently have access to this content.