Methods for the estimation and modeling of noise present in multi-beam sonar data, including the magnitude, probability distribution, and spatial correlation of the noise, are developed. The methods consider individual acoustic samples and facilitate compensation of highly localized noise as well as subtraction of noise estimates averaged over time. The modeled noise is included in an existing multi-beam sonar simulation model [Holmin, Handegard, Korneliussen, and Tjøstheim, J. Acoust. Soc. Am. 132, 3720–3734 (2012)], resulting in an improved model that can be used to strengthen interpretation of data collected in situ at any signal to noise ratio. Two experiments, from the former study in which multi-beam sonar data of herring schools were simulated, are repeated with inclusion of noise. These experiments demonstrate (1) the potentially large effect of changes in fish orientation on the backscatter from a school, and (2) the estimation of behavioral characteristics such as the polarization and packing density of fish schools. The latter is achieved by comparing real data with simulated data for different polarizations and packing densities.

1.
E. P.
Nunnallee
, “
An alternative to thresholding during echo-integration data collection
,”
Rapp. P.-V. Reun.−Com. Int. Explor. Mer
189
,
92
94
(
1990
).
2.
J. L.
Watkins
and
A. S.
Brierley
, “
A post-processing technique to remove background noise from echo integration data
,”
ICES J. Mar. Sci.
53
,
339
344
(
1996
).
3.
R. J.
Korneliussen
, “
Measurement and removal of echo integration noise
,”
ICES J. Mar. Sci.
57
,
1204
1217
(
2000
).
4.
D. N.
MacLennan
, “
Acoustical measurement of fish abundance
,”
J. Acoust. Soc. Am.
87
,
1
15
(
1990
).
5.
R. J.
Kloser
,
P. S. T.
Ryan
,
A.
Williams
, and
J. A.
Koslow
, “
Species identification in deep water using multiple acoustic frequencies
,”
Can. J. Fish. Aquat. Sci.
59
,
1065
1077
(
2002
).
6.
R. J.
Korneliussen
,
Y.
Heggelund
,
I. K.
Eliassen
, and
G. O.
Johansen
, “
Acoustic species identification of schooling fish
,”
ICES J. Mar. Sci.
66
,
1111
1118
(
2009
).
7.
F.
Gerlotto
,
M.
Soria
, and
P.
Fréon
, “
From two dimensions to three: The use of multibeam sonar for a new approach in fisheries acoustics
,”
Can. J. Fish. Aquat. Sci.
56
,
6
12
(
1999
).
8.
J.
Paramo
,
F.
Gerlotto
, and
C.
Oyarzun
, “
Three dimensional structure and morphology of pelagic fish schools
,”
J. Appl. Ichthyol.
26
,
853
860
(
2010
).
9.
R. J.
Korneliussen
,
Y.
Heggelund
,
I. K.
Eliassen
,
O. K.
Øye
,
T.
Knutsen
, and
J.
Dalen
, “
Combining multibeam-sonar and multifrequency-echosounder data: Examples of the analysis and imaging of large euphausiid schools
,”
ICES J. Mar. Sci.
66
,
991
997
(
2009
).
10.
A.
De Robertis
and
I.
Higginbottom
, “
A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise
,”
ICES J. Mar. Sci.
64
,
1282
1291
(
2007
); available at http://icesjms.oxfordjournals.org.
11.
A. J.
Holmin
,
N. O.
Handegard
,
R. J.
Korneliussen
, and
D.
Tjøstheim
, “
Simulations of multi-beam sonar echos from schooling individual fish in a quiet environment
,”
J. Acoust. Soc. Am.
132
,
3720
3734
(
2012
).
12.
O. R.
Godø
,
K. G.
Foote
,
J.
Dybedal
,
E.
Tenningen
, and
R.
Patel
, “
Detecting Atlantic herring by parametric sonar
,”
J. Acoust. Soc. Am.
127
,
153
159
(
2010
).
13.
D. N.
MacLennan
,
P. G.
Fernandes
, and
J.
Dalen
, “
A consistent approach to definitions and symbols in fisheries acoustics
,”
ICES J. Mar. Sci.
59
,
365
369
(
2002
).
14.
D.
MacLennan
, “
Time varied gain functions for pulsed sonars
,”
J. Sound Vib.
110
,
511
522
(
1986
).
15.
K. G.
Foote
, “
Linearity of fisheries acoustics, with addition theorems
,”
J. Acoust. Soc. Am.
73
,
1932
1940
(
1983
).
16.
R.
Barakat
, “
First-order statistics of combined random sinusoidal waves with applications to laser speckle patterns
,”
Opt. Acta
21
,
903
921
(
1974
).
17.
J. M.
Finkelstein
and
R. E.
Schafer
, “
Improved goodness-of-fit tests
,”
Biometrika
58
,
641
645
(
1971
).
18.
See supplemental material at http://dx.doi.org/10.1121/1.4941913 for a description of a method for simultaneous estimation of the background noise and periodic noise in beams affected by periodic noise, and a method for generating approximately exponentially distributed vectors that are correlated between vectors and autocorrelated along vectors.
19.
E.
Ona
, “
An expanded target-strength relationship for herring
,”
ICES J. Mar. Sci.
60
,
493
499
(
2003
).
20.
Y.
Tang
,
Y.
Nishimori
, and
M.
Furusawa
, “
The average three-dimensional target strength of fish by spheroid model for sonar surveys
,”
ICES J. Mar. Sci.
66
,
1176
1183
(
2009
).
21.
J. K.
Parrish
,
S. V.
Viscido
, and
D.
Grünbaum
, “
Self-Organized Fish Schools: An Examination of Emergent Properties
,”
Biol. Bull.
202
,
296
305
(
2002
).
22.
B.
Pedersen
and
M. V.
Trevorrow
, “
Continuous monitoring of fish in a shallow channel using a fixed horizontal sonar
,”
J. Acoust. Soc. Am.
105
,
3126
3135
(
1999
).
23.
D.
Chu
, “
Technology evolution and advances in fisheries acoustics
,”
J. Mar. Sci. Technol.
19
,
245
252
(
2011
).
24.
K. G.
Foote
, “
Extinction cross-section of Norwegian spring-spawning herring
,”
ICES J. Mar. Sci.
56
,
606
612
(
1999
).
25.
I. B.
Andreeva
and
A. V.
Belousov
, “
Multiple sound scattering by densely packed shoals of marine animals
,”
ICES J. Mar. Sci.
53
,
323
327
(
1996
).
26.
K. G.
Foote
, “
Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths
,”
J. Acoust. Soc. Am.
67
,
2084
2089
(
1980
).

Supplementary Material

You do not currently have access to this content.