Stress-dependent elastic moduli of polycrystalline materials are used in a statistically based model for the scattering of ultrasonic waves from randomly oriented grains that are members of a stressed polycrystal. The stress is assumed to be homogeneous and can be either residual or generated from external loads. The stress-dependent elastic properties are incorporated into the definition of the differential scattering cross-section, which defines how strongly an incident wave is scattered into various directions. Nine stress-dependent differential scattering cross-sections or scattering coefficients are defined to include all possibilities of incident and scattered waves, which can be either longitudinal or (two) transverse wave types. The evaluation of the scattering coefficients considers polycrystalline aluminum that is uniaxially stressed. An analysis of the influence of incident wave propagation direction, scattering direction, frequency, and grain size on the stress-dependency of the scattering coefficients follows. Scattering coefficients for aluminum indicate that ultrasonic scattering is much more sensitive to a uniaxial stress than ultrasonic phase velocities. By developing the stress-dependent scattering properties of polycrystals, the influence of acoustoelasticity on the amplitudes of waves propagating in stressed polycrystalline materials can be better understood. This work supports the ongoing development of a technique for monitoring and measuring stresses in metallic materials.

1.
D. I.
Crecraft
, “
The measurement of applied and residual stresses in metals using ultrasonic waves
,”
J. Sound Vib.
5
,
173
192
(
1967
).
2.
D. M.
Egle
and
D. E.
Bray
, “
Measurement of acoustoelastic and third-order elastic constants for rail steel
,”
J. Acoust. Soc. Am.
60
,
741
744
(
1976
).
3.
G. S.
Kino
,
J. B.
Hunter
,
G. C.
Johnson
,
A. R.
Selfridge
,
D. M.
Barnett
,
G.
Herrmann
, and
C. R.
Steele
, “
Acoustoelastic imaging of stress fields
,”
J. Appl. Phys.
50
,
2607
2613
(
1979
).
4.
G. S.
Kino
,
D. M.
Barnett
,
N.
Graeli
,
G.
Herrmann
,
J. B.
Hunter
,
D. B.
Ilic
,
G. C.
Johnson
,
R. B.
King
,
M. P.
Scott
,
J. C.
Shyne
, and
C. R.
Steele
, “
Measurement of acoustoelastic and third-order elastic constants for rail steel
,”
J. Nondestruct. Eval.
1
,
67
77
(
1980
).
5.
R. B.
King
and
C. M.
Fortunko
, “
Determination of in-plane residual stress states in plates using horizontally polarized shear waves
,”
J. Appl. Phys.
54
,
3027
3035
(
1983
).
6.
R. B.
Thompson
,
J. F.
Smith
, and
S. S.
Lee
, “
Microstructure-independent acoustoelastic measurement of stress
,”
Appl. Phys. Lett.
44
,
296
298
(
1984
).
7.
T.
Bateman
,
W. P.
Mason
, and
H. J.
McSkimin
, “
Third-order elastic moduli of germanium
,”
J. Appl. Phys.
32
,
928
936
(
1961
).
8.
A.
Seeger
and
O.
Buck
, “
Die experimentelle Ermittlung der elastischen Konstanten höherer Ordnung
” (“The experimental determination of higher-order elastic constants”),
Z. Naturforsch. A
15
,
1056
1067
(
1960
).
9.
R. N.
Thurston
and
K.
Brugger
, “
Third-order elastic constants and the velocity of small amplitude waves in homogeneously stressed media
,”
Phys. Rev.
133
,
A1604
A1610
(
1964
).
10.
R. N.
Thurston
, “
Effective elastic coefficients for wave propagation in crystals under stress
,”
J. Acoust. Soc. Am.
37
,
348
356
(
1965
).
11.
R. E.
Green
, “
Ultrasonic Investigation of Mechanical Properties
,” in
Treatise on Materials Science and Technology
(
Academic Press
,
New York
1973
).
12.
Y.-H.
Pao
,
W.
Sachse
, and
H.
Fukuoka
, “
Acoustoelasticity and ultrasonic measurements of residual stress
,” in
Physical Acoustics
, edited by
W. P.
Mason
and
R. N.
Thurston
(
Academic Press
,
New York
1984
), Vol.
17
, pp.
61
143
.
13.
M.
Hirao
and
H.
Ogi
,
EMATs for Science and Industry: Noncontacting Ultrasonic Measurements
(
Kluwer Academic Publishers
,
Norwell, MA
,
2003
), pp.
215
260
.
14.
A.
Hikata
,
R.
Truell
,
A.
Granato
,
B.
Chick
, and
K.
Lücke
, “
Sensitivity of ultrasonic attenuation and velocity changes to plastic deformation and recovery in aluminum
,”
J. Appl. Phys.
27
,
396
404
(
1956
).
15.
A.
Hikata
,
B.
Chick
,
C.
Elbaum
, and
R.
Truell
, “
Ultrasonic attenuation and velocity data on aluminum single crystals as a function of deformation and orientation
,”
Acta Met.
10
,
423
429
(
1962
).
16.
A.
Hikata
,
B.
Chick
, and
C.
Elbaum
, “
Effect of dislocations on finite amplitude waves in aluminum
,”
Appl. Phys. Lett.
3
,
195
197
(
1963
).
17.
R.
Truell
,
C.
Elbaum
, and
B. B.
Chick
,
Ultrasonic Methods in Solid State Physics
(
Academic Press
,
New York
,
1969
), pp.
230
251
.
18.
H.
Ogi
,
N.
Suzuki
, and
M.
Hirao
, “
Noncontact ultrasonic spectroscopy on deforming polycrystalline copper: Dislocation damping and acoustoelasticity
,”
Metall. Mater. Trans. A
29
,
2987
2993
(
1998
).
19.
J. A.
Turner
and
G.
Ghoshal
, “
Polycrystals under applied loads
,”
Appl. Phys. Lett.
97
,
031907
(
2010
).
20.
C. M.
Kube
,
H.
Du
,
G.
Ghoshal
, and
J. A.
Turner
, “
Stress-dependent changes in the diffuse ultrasonic backscatter coefficient in steel: Experimental results
,”
J. Acoust. Soc. Am.
132
,
EL43
EL48
(
2012
).
21.
C. M.
Kube
,
H.
Du
,
G.
Ghoshal
, and
J. A.
Turner
, “
Measurement of thermally induced stresses in continuously welded rail through diffuse ultrasonic backscatter
,” in
Review of Progress in Quantitative Nondestructive Evaluation
, edited by
D. O.
Thompson
and
D. E.
Chimenti
(
AIP
,
Melville, NY
,
2012
), Vol.
31
, pp.
1673
1680
.
22.
C. M.
Kube
and
J. A.
Turner
, “
Stress-dependent second-order grain statistics of polycrystals
,”
J. Acoust. Soc. Am.
138
,
2613
2625
(
2015
).
23.
G.
Ghoshal
,
J. A.
Turner
, and
R. L.
Weaver
, “
Wigner distribution function of a transducer beam pattern within a multiple scattering formalism for heterogeneous solids
,”
J. Acoust. Soc. Am.
122
,
2009
2021
(
2007
).
24.
G.
Ghoshal
and
J. A.
Turner
, “
Diffuse ultrasonic backscatter at normal incidence through a curved interface
,”
J. Acoust. Soc. Am.
128
,
3449
3458
(
2010
).
25.
P.
Hu
,
C. M.
Kube
,
L. W.
Koester
, and
J. A.
Turner
, “
Mode-converted diffuse ultrasonic backscatter
,”
J. Acoust. Soc. Am.
134
,
982
990
(
2013
).
26.
C. M.
Kube
, “
Acoustoelastic scattering and attenuation in polycrystalline materials
,” Ph.D. dissertation,
University of Nebraska-Lincoln
,
Lincoln, NE
(
2014
).
27.
C.-S.
Man
and
W. Y.
Lu
, “
Towards an acoustoelastic theory for measurement of residual stress
,”
J. Elast.
17
,
159
182
(
1987
).
28.
C.-S.
Man
and
R.
Paroni
, “
On the separation of stress-induced and texture-induced birefringence in acoustoelasticity
,”
J. Elast.
45
,
91
116
(
1996
).
29.
C.-S.
Man
, “
Effects of crystallographic texture on the acoustoelastic coefficients of polycrystals
,”
Nondestruct. Test. Eval.
15
,
191
214
(
1999
).
30.
R.
Paroni
and
C.-S.
Man
, “
Constitutive equations of elastic polycrystalline materials
,”
Arch. Rational Mech. Anal.
150
,
153
177
(
1999
).
31.
R.
Paroni
and
C.-S.
Man
, “
Two micromechanical models in acoustoelasticity: A comparative study
,”
J. Elast.
59
,
145
173
(
2000
).
32.
M.
Huang
,
H.
Zhan
,
X.
Lin
, and
H.
Tang
, “
Constitutive relation of weakly anisotropic polycrystal with microstructure and initial stress
,”
Acta. Mech. Sin.
23
,
183
198
(
2007
).
33.
The eighth-rank covariance tensor is written in Voigt's contracted index form when explicit components are expressed where the pairs of indices assume the following values: 111,222,333,12or216,13or315,23or324.
34.
G.
Simmons
and
H.
Wang
,
Single Crystal Elastic Constants and Calculated Aggregate Properties
(
MIT Press
,
Cambridge, MA
,
1971
).
35.
A. G.
Every
and
A. K.
McCurdy
, “
Second and higher-order elastic constants
,” in
Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series Group III: Crystal and Solid State Physics
, edited by
O.
Madelung
and
D. F.
Nelson
(
Springer-Verlag
,
Berlin
,
1992
), Vol.
29
.
36.
J. H.
Rose
, “
Ultrasonic backscattering from polycrystalline aggregates using time-domain linear response theory
,” in
Review of Progress in Quantitative NDE
, edited by
D. O.
Thompson
and
D. E.
Chimenti
(
Plenum Press
,
New York
,
1991
), Vol.
10
, pp.
1715
1720
.
37.
J. H.
Rose
, “
Ultrasonic backscatter from microstructure
,” in
Review of Progress in Quantitative NDE
, edited by
D. O.
Thompson
and
D. E.
Chimenti
(
Plenum Press
,
New York
,
1992
), Vol.
11
, pp.
1677
1684
.
38.
J. A.
Turner
and
R. L.
Weaver
, “
Radiative transfer and multiple scattering of diffuse ultrasound in polycrystalline media
,”
J. Acoust. Soc. Am.
96
,
3675
3683
(
1994
).
39.
F. J.
Margetan
,
P.
Haldipur
, and
R. B.
Thompson
, “
Looking for multiple scattering effects in backscattered ultrasonic noise from jet-engine nickel alloys
,” in
Review of Progress in Quantitative NDE
, edited by
D. O.
Thompson
and
D. E.
Chimenti
(
AIP
,
Melville, NY
,
2005
), Vol.
14
, pp.
2129
2136
.
40.
S.
Hirsekorn
, “
Theoretical description of ultrasonic propagation and scattering phenomena in polycrystalline structures aiming for simulations on nondestructive materials characterization and defect detection
,” in
Proceedings of the 11th ECNDT Conference
, Prague (
2014
).
41.
Wave modes are denoted with the prefix quasi- because a stress-induced anisotropy can cause the shear wave displacement to not be transverse and the longitudinal wave displacement to not be parallel to the propagation direction. For some special propagation directions, known as pure-mode directions, the displacements of the shear and longitudinal waves are perpendicular and parallel to the propagation direction, respectively. In order to avoid confusion, this article does not drop the use of the prefix quasi- for the pure-mode cases.
42.
C. M.
Kube
and
J. A.
Turner
, “
On the acoustoelasticity of polycrystalline materials
,”
J. Acoust. Soc. Am.
138
,
1498
1507
(
2015
).
43.
L.
Thomsen
, “
Weak elastic anisotropy
,”
Geophysics
51
,
1954
1966
(
1986
).
44.
F. I.
Fedorov
,
Theory of Elastic Waves in Crystals
(
Plenum Press
,
New York
,
1968
), pp.
217
226
.
45.
J. A.
Turner
, “
Elastic wave propagation and scattering in heterogeneous, anisotropic media: Textured polycrystalline materials
,”
J. Acoust. Soc. Am.
106
,
541
552
(
1999
).
46.
See supplementary material at http://dx.doi.org/10.1121/1.4941253 for animated Figs. 3 and 4.
47.
R. L.
Weaver
, “
Diffusivity of ultrasound in polycrystals
,”
J. Mech. Phys. Solids
38
,
55
86
(
1990
).
48.
R. B.
Thompson
,
F. J.
Margetan
,
P.
Haldipur
,
L.
Yu
,
A.
Li
,
P.
Panetta
, and
H.
Wasan
, “
Scattering of elastic waves in simple and complex polycrystals
,”
Wave Motion
45
,
655
674
(
2008
).
49.
L.
Yang
and
S. I.
Rokhlin
, “
Ultrasonic backscattering in cubic polycrystals with ellipsoidal grains and texture
,”
J. Nondestruct. Eval.
32
,
142
155
(
2013
).
50.
J.
Li
,
L.
Yang
, and
S. I.
Rokhlin
, “
Effect of texture and grain shape on ultrasonic backscattering in polycrystals
,”
Ultrasonics
54
,
1789
1803
(
2014
).

Supplementary Material

You do not currently have access to this content.